Fixed point Floer cohomology of a Dehn twist in a
monotone setting and in more general contexts

Riccardo Pedrotti, UT Austin

Freemath - May 17, 2022



A Morse-theoretical approach to Fixed point Floer cohomology

e Let (M, w) be a symplectic manifold, and let ¢ : (M, w) — (M, w) be a
symplectomorphism. Let H: R X M — R be an Hamiltonian

o Let Q¢ be the twisted loop space of M

Q) ={r:R->M| gyt +1) =y}
» We want to do Morse theory on Q¢
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e dy is closed but not exact. Let 7: €, — €2, be the smallest cover s.t. 7%a.,, = df
H b b H H

du(s,1) = u(s,0)
Q¢ =< [(y,u)] | u:[0,1] X[0,1] > M s.t. u(0,1) = yy(2)

u(1,1) = y(1)

K

(%M) ~ (y’,u’)®y=y’ and [ U* W = J u'
[0,1]7 [0,1]7

{Crit. points of &/ H} { 'lifts” of fixed points of l//lbqb}

. Let A be the completion of the group ring of deck group 1" of 22\4; w.r.t. to

ev, .l — |

» Def: CF*(¢; A\,) is the A -vector space generated by fixed points of yfglgb



« Morse differential is given by counting index 1 gradient flow lines

o + J(0u — Xy (u)) =0
(Vdyy=7) & Ju: RXR — M | W o uls,t+1) = u(s, 1) (*)
lim u(s, ) = x, € Fix(w),)

o M (x_, x,,J, H) is the (moduli) space of solutions of ( * ) with index k

e For generic choices of J, H%k(x_,)@r, J, H) is a smooth manifold of dim k

 Not compact: there is a free [R-action by translation.

%k(x_,x JoH) = %k(x_,x J, H)/




 Gromov-Floer compactness: no bubbling = 0 =0

* Topology helps in ruling out bubbles:
» Symplectically aspherical: VA € n,(M), ([w],A) =0
e (Strong) monotonicity: Ac; = [w]

 Weakly+ - monotonicity : VA € 7,(M) s.t. 0 < (¢c,(M),A) <n—-2= w(A) >0



...and Iinvariance

. HF*(p, \,) := H*(CF*(¢h; A,.), 0)
» We made some choices in order to define HF*(¢, A _): (regular J and H)

» “Continuation maps” prove invariance under these choices

<, ¢ CF (A 0 H)
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Here comes the Dehn twist:

e Let V C M be a Lagrangian sphere, we have a sympl. embedding
(T;S”, a)std> S (M, w)

. We consider the (normalised) geodesic flow on 7% §"\S"

o(uU,v) = (cos(t)u — sin(?)||ul||v, cos(?)v + sin(t)ﬁ)
u

+ 0,(u,v) = (—u, —v) so it can be extended on T% §"

e Using the local model we can define 7, M - M

» Problem: 7, has only degenerate fixed points:  det (dva — dxld) = ()



« Solution: We perturb it with an (autonomous) Hamiltonian function A that
restricts to a Morse function on M\ V
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o Let l//,i be the Hamiltonian flow associated to &, the “perturbed Dehn

= 4 . . ]
twist” is defined as T, ‘=Y, Ty

» HF*(7y) := HF*(7,) (continuation maps)



Some (important) observations on the perturbed twist:

« Hamiltonian flow of 4 moves points along the same
(Reeb) direction as 7y,

* No fixed points nearby V

 Far from V, T, = W]/}TV = W}} T (v)

{ fixed points Tp} < { fixed point 1//,[}}




Main result:

Theorem [P]: Let (M, w) be a rational, weakly+-monotone symplectic manifold of dimension
> 4. Then

HF*(t,; A,) = H*(M, V; A)

Disclaimers:

» Both sides are Z,-graded and the isomorphism is of relatively graded vector spaces over A .

* More generally,
HF*(zy 7,3 A,) = H¥(M\V,, Vi3 A,)

 |If dim M > 6, we can drop the rationality assumption on [®]



Neck-stretching

 Neck-stretching consists in a creating a family of (regular) a.c.s. {Jt’/"}i s.t. with the
iInduced metric

((—8, e) X S(V), gjyl-) isgém. ((—vl- — &, U+ €) X S(V), gstd.)

* This can be done because S(V) C M is a contact codimension 1 submanifold of M

» We construct a family of (small) Hamiltonians A" such that on the neck
HVh”ngyi =0>(

o Let CF* := CF*(7,; A,



Energy estimates

Definition: The energy of a J-hol. curve u is

2
E(u) := [ |du| = J u*w
Rx[0,1] / Rx[0,1]

Proposition: There exists a sequence of numbers { 4.}, such that

[— 400

. If u'is a J¥-hol. curve intersecting {0} X S(V), then E(u') > A



ldea of proof

. Key observation: on the neck, d“i(x, 7 (x)) =

» \We estimate the blue area by finding a small “rectangle” contained In
Im(u') N (—¢, €) X S(V) whose area is bounded below by A; = oo
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Proof of the theorem In the strongly monotone case

» M strongly monotone = @, | = Ac, & HZ(MTV; R)

e Letu! e %k(x_,x+,J”i), fori = 1,2. We can think of them as maps

u': Rx St — M.
%
. Their concatenation w = u'ffu”isthenamapw : S! x §! — MTV

R.R.
wrw, = AJ wrc, =0

T
SIxS1 '

Ew') — Eu*) = E(w) = J
S1xS1



Proof of the theorem In the strongly monotone case

« = We have a uniform bound £ on the energy of trajectories that go
through the neck

» Let v; big enough such that 4, > E = no trajectories can go through the
neck

o (CF'(T]I;i), af”i) coincides with (CF’(h”i\M\V), af”i)

e PSS isomorphism:
HF*(h”i\M\V; A,) = HM*(h”ilM\V; AN,)=H*M,V;\,)



(General case:

* Weakly+ - monotonicity: VA € z,(M) s.t.0 < (¢;,(M),A) <n—2=> w(A) >0

» spherical classes of low negative index have negative area and hence no holomorphic
representative.
*\Weakly - monotonicity is “not enough” for fixed point Floer cohomology

*Symplectic Fano and CY-mflds, or any symplectic manifold with dim < 6

 \We don’t have uniform upper bound on energy of trajectories anymore



Energy filtration
» We can filter CFZ.>X< by energy

F"CFZ?‘< = { Z E:X

Definition: the Relative Floer cohomology of the pair (FkCFl.*, FjCFl.*)

fork<jis e
f

®) < rk}

HFE’;{])(T ) := H*(F*CF,/F/CF)

Theorem [Ono (Ham. case)]:

. HF¥(ry) & lim lim HF* (¢) e e

k——00 +00«] (k)

» if [w] is a rational class, for suitable filtrations there are compatible continuation maps




Proof of the Theorem

There is an increasing sequence of numbers {r;}, — =+ oo such that:

» |t is suitable for Ono’s Theorem for continuation maps (J*, h*i) ~ (J*i+1, h*i+1)

. Foreach, r, € {1}, letr, € {1y} be the biggest element such that |7, — 7 | < 4;, then
N PSS o "
HEFG )(7") = HEG k)(w”l|M\V) = HMG o)

We can now proceed with the proof:

oK ~/ >I<
HF (T) Iim lim HF (k])(T)

k——00 +00«j

12

>~ Jim Im lm HF* (T)

k——00 +00«j +00«i )

12

>~ |im Im HF* (T)

k——0c0 +00«i (k-ky)

|2

~ |lim lim HM?* (h

k——00 +00«i (k-ky)

o) = HMH () = HESM, V5 A,)



Applications

Let 2 be a surface and a collection of circles V|, ..., V, s.t. 7y, o - e 7, ~ Id

n

We can think of them as vanishing cycles for a Lefschetz fibration X% - S?. What about its S-W
invariants®

In the spirit of G-W = S-W, we want to count J-holomorphic sections of X* = Seidel’s exact triangle
“sees” them.

We need a refinement to keep track of homology classes: same way as S-W keeps track of Spin©
-structures

HF, (@) ;v HF, (2, %)



Applications

 We need a fully geometric description of the triangle: if the fibre of X% is a
surface whose genus is at least 2 we have it.
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THANKS!



