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Floer Cohomology and Arc Spaces

I Observation (Seidel 2001):

Floer Cohomology of an isolated
hypersurface singularity is similar to a certain space of arcs.

I Very roughly, the arc space of a singularity is the space of
holomorphic maps from the unit disk passing through that
singularity. Actually this is called the short arc space.

I We will be only interested in jets of such maps.

I However, my personal opinion is that the entire arc space is
important if one wishes to study other more complicated Floer
groups.
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I General goal:

To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers:

You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry,

without doing much symplectic
geometry!



I General goal: To understand this relationship between Floer
theory and arc spaces better.

I Another hope is that it makes it easier to compute Floer
groups.

I This talk will be about some work in progress.

I Advertising spiel for algebraic geometers: You too can prove
results in symplectic geometry, without doing much symplectic
geometry!



Milnor Monodromy Map

I Let f : Cn −→ C be a polynomial with an isolated singularity
at 0 satisfying f (0) = 0.

I Let Sε ⊂ Cn be the sphere of small radius ε > 0.

I The Milnor map is defined to be the symplectic fibration

f

|f |
: Sε − f −1(0) −→ S1.
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I Fact: The closure of Mf in Sε is a Liouville domain and

φf
extends to an exact symplectomorphism of this Liouville
domain (after modifying the fibration slightly).

I Recall a Liouville domain is a pair (M, θ) where
I M is a compact manifold with boundary.
I dθ is a symplectic form.
I The unique vector field Xθ satisfying iXθ

dθ = θ points
outwards along ∂M.
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is the standard complex structure on Cn.

I Fact: f −1(0) is a contact submanifold of Sε. This is called
the link of f .
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Example

I Consider f (x , y) = x2 + y3.

I The link Sε ∩ f −1(0) is the trefoil knot.

I The Milnor fiber is a torus with one boundary component.

Z/2

Z/3

φf generates Z/6 = Z/2× Z/3 action
(modulo some boundary rotation factor)

Milnor Fiber Mf

Trefoil Knot
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Floer Cohomology

I Now let φ : M −→ M be an exact symplectomorphism of a
Liouville domain M with Liouville form θ.

I Floer Cohomology HF ∗(φ) is defined as follows:

I The generators are fixed points of φ, or equivalently, constant
sections of the mapping torus

Tφ = [0, 1]×M/ ∼, ((1, x) ∼ (0, φf (x))).

I The differential counts certain holomorphic sections of R×Tφ.

I Technical remark: Grading is given by minus Conley-Zehnder
index, with trivialization induced by Cn.
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I Theorem: Suppose f̌ : Cn −→ C is another polynomial with
isolated singularity at 0.

Let φf̌ be the Milnor monodromy
map of f̌ . Suppose that there is a contactomorphism of Sε
sending the link of f to the link of f̌ . Then

HF ∗(φdf ) ∼= HF ∗(φd
f̌

)

for each d ∈ N.

I In other words, Floer cohomology is an invariant of the link as
a contact submanifold.
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Contact Loci

I Let D ⊂ C be the unit disk.

I The dth jet space Jetd(Cn)|0 is the variety of d-jets of
holomorphic maps v : D→ C satisfying v(0) = 0.

I More concretely it is the affine space of n-tuples of degree d
polynomials whose constant coefficient vanishes:{

u(t) := ad t
d + ad−1t

d−1 + · · ·+ a1t : a1, · · · , ad ∈ Cn
}

∼= (tC[t]/(td+1))n ∼= Cdn.
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I Morally, it is the space of d-jets of holomorphic maps D −→ C
whose boundary ‘wraps’ around the singularity d times.
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Example:

Suppose f (x , y) = x2 + y3 ∈ C[x , y ].

Then χ2(f ) =
{
u(t) = Jet2(C2)|0 : f (u(t)) = t2 mod t3

}
=

{(
a21

a22

)
t2 +

(
a11

a12

)
t : (a21t

2 + a11t)2 + (a22t
2 + a12t)3 = t2 mod t3

}

=
{

(a11, a12, a21, a22) ∈ C4 : a2
11 = 1

}
∼= C3 t C3.
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A Conjecture

Conjecture: (Nero Budur, Javier Fernández de Bobadilla, Quy
Thuong Lê, Hong Duc Nguyen):

HF ∗(φdf ) ∼= H∗+2nd+n−1
c (χd(f )).

Theorem: (BdBLN). Suppose f = fm + fm+1 + · · · where fi is a
homogenous polynomial of degree i for each i . Then the groups
above with d = m are isomorphic to H∗c (F ), where F is the Milnor
fiber of fm. Hence for d = m the conjecture is true.

Corollary: H∗c (F ) is a contact invariant of the link (viewed as a
contact submanifold of Sε).

Theorem (M, In progress). The conjecture above is true in
general.
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Proof Idea

I We will first construct a natural morphism (called a PSS
map):

ev : HF ∗(φdf ) −→ H∗+2nd+n−1
c (χd(f )).

I On the chain level, this will be a count of holomorphic disks
whose boundary limits to an orbit of the mapping torus and so
that the d-jet of this disk sweeps out a cycle in a thickening
of χd(f ) inside Jetd(f )|0.

I This map is similar in spirit to the log PSS map defined by
Ganatra and Pomerleano.
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We start with the singular fibration:

f : f −1(Dδ) ∩ Bε −→ Dε

where 0 < δ � ε� 1 and where Dδ ⊂ C is the disk of radius δ
and Bε ⊂ Cn is the closed ball of radius ε.
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Now f −1(∂Dδ) ∩ Bε (up to deformation) is the mapping torus Tφf
of φf .
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We now glue a cylindrical end [1,∞)× Tφf to this fibration giving

us a large space E
f̃
.

We also extend the map f to f̃ : E
f̃
−→ C in

a natural way.
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At the chain level our PSS map:

ev : HF ∗(φdf ) −→ H∗+2nd+n−1
c (χd(f )).

is defined as follows: We need to compute ev(p) for a fixed point p
of φdf . Choose the unique constant d-fold multi section of the
mapping torus Tφf = [0, 1]×Mf / ∼ passing through p. This is a
map:

γ : S1 −→ Tφf

with image [0, 1]×{p}/ ∼ so that its composition with the natural
map:

Tφf −→ S1

is the d-fold covering map:

S1 −→ S1, z −→ zd .
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We now have a natural evaluation map:

ev :M(p) −→ χd(f )

sending u to its d-jet at 0. Hence ev represents a locally finite
homology cycle. Hence it represents an element of C ∗c (χd(f ))
(modulo some details).

One issue is that χd(f ) is singular, however it is a subvariety of
Jetd(Cn)|0 and so you can consider some larger cycle in Jetd(Cn)|0
and restrict to χd(f ).

A standard PSS style gluing and compactness argument ensures
that ev is a chain map.
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To show that ev is an isomorphism, we actually need to work in a
small neighborhood of the preimage of χd(f ) inside Jetl(Cn)|0 for
some large l ≥ d .

However in this talk we will suppress this detail.
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Key idea of the proof:

Construct filtrations F and F ′ on the
chain complexes computing H∗+2nd+n−1

c (χd(f )) and HF ∗(φdf ) and
show that our PSS map ev

1. respects these filtrations and

2. induces an isomorphism on the associated graded filtration.

These filtrations come from spectral sequences. One by Budur, de
Bobadilla, Lê, Nguyen (1911.08213) and one by by myself
(1608.07541).
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Bobadilla, Lê, Nguyen (1911.08213) and one by by myself
(1608.07541).



Key idea of the proof: Construct filtrations F and F ′ on the
chain complexes computing H∗+2nd+n−1

c (χd(f )) and HF ∗(φdf ) and
show that our PSS map ev

1. respects these filtrations and

2. induces an isomorphism on the associated graded filtration.

These filtrations come from spectral sequences.

One by Budur, de
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Both filtrations are constructed using a resolution of f .

By
Hiranoka resolution of singularities, we can find a holomorphic map
B : Y −→ Cn so that

1. B is an isomorphism onto Cn − 0.

2. B−1(f −1(0)) is a union of transversally intersecting complex
hypersurfaces E0, · · · ,El .

3. There is an integral Kähler form ωY on Y so that ωY = dθY
away from B−1(0).
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Construction of F

Our filtration on H∗+2nd+n−1
c (χd(f )) will be induced by a function

F : χd(f ) −→ R.

For simplicity, we will assume d is large.

Let u : D −→ Cn be a holomorphic map representing an element η
of χd(f ). We define

F (η) := lim
r→0

∫ 2π

0

d

dt
u(re it)(θY )dt.

This induces the filtration F on the chain complex computing
H∗+2nd+n−1
c (χd(f )).
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The key point here is that, by the removable singularity theorem, u
admits a lift ũ : D −→ Y .

Such an arc intersects a stratum of
∪iEi . The value of F is determined by this stratum.
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Also if I have a family of arcs ut , t ∈ [0, 1], with corresponding lifts
(ũt)t∈[0,1], then ũt Gromov converges to ũ0 possibly with a bubble
tree attached. The positive energy of this bubble tree ensures that
F gives us a filtration on the chain complex.
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tree attached.

The positive energy of this bubble tree ensures that
F gives us a filtration on the chain complex.



The key point here is that, by the removable singularity theorem, u
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The filtration on CF ∗(φd
f )

We now will describe the filtration F ′ on the chain complex
CF ∗(φdf ).

First of all, we deform the mapping torus Tφf so that it
is ‘close’ to ∪iEi .
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The filtration F ′ is now given by integrating θY over each orbit
γ : S1 −→ Tφf . These orbits come in families corresponding to
each stratum of ∪iEi .
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By Stokes’ theorem, we see that the PSS map ev respects the
filtrations F and F ′.

Also since Tφf is ‘close’ to ∪iEi , the holomorphic multisections
defining the PSS map ev have small energy. Hence F ′(γ) and
F (ev(γ)) are very close. Therefore to show that ev induces a
quasi-isomorphism on the associated graded complexes, one only
needs to consider low energy holomorphic disks. Such low energy
disks have very small diameter in the resolution Y .
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In the diagram above, you can see the family of disks ũ
intersecting E2 − E1 transversally at 0. The compactly supported
cohomology of such a family of disks is part of the E 1 page of the
spectral sequence associated to F . There is a family of orbits going
around E2 near E2 − E1 whose local Floer cohomology is the same
group. This local Floer group gives the corresponding part of the
E1 page for the F ′ filtration.
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Further Directions

I There is a pants product (and also many other Floer theoretic
operations) on ⊕d∈NHF

∗(φdf ). What do they correspond to
on the arc space?

I Ganatra and Pomerleano constructed a spectral sequence
computing symplectic cohomology of an affine variety from a
smooth normal crossing compactification. What happens if
the compactification is no longer smooth normal crossing?
The hope is that one can build the E 1 page from various
spaces of (low energy) arcs.
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I Suppose I have an isolated singularity (which is not necessarily
a hypersurface singularity).

Can I compute (full) contact
homology using the arc space? This is a difficult question
since such groups can be infinite dimensional in every degree
(both positive and negative). However, can one build some
kind of spectrum from the (short) arc space using these
groups. Note that one has to consider short arcs by work of
Kollár (I.e. one has to go beyond jets).
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