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Introduction

Outline

I Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical
bases satisfying nice positivity properties.

I Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry
(the Gross-Siebert program)  

Canonical “theta bases” for
classical cluster algebras.

I Also expect canonical bases for quantum cluster algebras (Berenstein-Zelevinsky,
Fock-Goncharov).

I Davison-M: GHKK arguments + DT theory Quantum theta bases.

I Fock-Goncharov, Musiker-Schiffler-Williams: Functions on certain moduli of local
systems on marked surfaces (i.e. skein algebras) have cluster algebra structures
with canonical bases of “bracelets.”

I Muller, D. Thurston: Quantum skein algebras are quantum cluster algebras and
have quantum bracelet bases.

I M-Qin: (Quantum) bracelet bases are (quantum) theta bases.
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SYZ heuristics behind GHKK

SYZ Conjecture

Mirror spaces X and Y should have dual special Lagrangian torus fibrations:

X Y

B
µX µY

Travis Mandel Bracelet bases are theta bases February 14, 2022 3 / 27



SYZ heuristics behind GHKK

Local coordinate on B

Given X with Kähler form ωX and SYZ fibration µX : X → B, try to construct Y :

Let γ1, . . . , γn be a basis for π1(Sn
1 ) = π1(µ−1

X (Q)).

B

X

yj =
∫

Γj
(ωX )

Γj

γj

{yj |j = 1, . . . , n} form local coordinates on B.
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SYZ heuristics behind GHKK

Local coordinates for Y

I The yj ’s form local coordinates on B.

I Let xj := dyj . This determines lattices T ∗Z B ⊂ T ∗B and TZB ⊂ TB.

I Locally,
X = T ∗B/T ∗Z B and Y = TB/TZB.

I wj := xj + iyj gives local holomorphic coordinates for Y .

I zj := exp(2πiwj ) gives local algebraic coordinates.
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SYZ heuristics behind GHKK

Global coordinates for Y

I For some cases, p ∈ TZB  global function ϑp on Y .

I Let Dp,Q be the set of holomorphic disks going to infinity in direction p and with
boundary on torus over Q.

B

X

Γ

p Q

I For Γ ∈ Dp,Q , let yΓ :=
∫

Γ
ωX .

I Varying Q makes yΓ a local function on B. Let
xΓ := dyΓ.

I Let zΓ := exp(2πi(xΓ + iyΓ)).

I Local expression for ϑp near torus over Q given
by:

ϑp,Q :=
∑

Γ∈Dp,Q

zΓ.
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SYZ heuristics behind GHKK

Holomorphic disks

Typically, some fibers are singular (e.g., pinched tori). This results in more holomorphic
disks.

B

X
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The Gross-Siebert program

The Gross-Siebert program

B

X

The graph in B is a tropical disk.

The Gross-Siebert Program:

I Use the tropical picture to construct mirrors Y with canonical theta function bases
for their rings of global functions.

I Use log geometry to relate these bases to curve counts in X .
I [M, Keel-Yu, Gross-Siebert]; also [Tseng-You] (using multi-root stacks instead of log

geometry), and others from symplectic perspective.
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The Gross-Siebert program

Wall-crossing

Holomorphic disks over B result in walls where our local coordinate system changes:

B

X

 

E.g., (C∗)2 99K (C∗)2, x−1 7→ x−1(1 + y).
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The Gross-Siebert program

Scattering

The initial walls can interact to form new walls:

Travis Mandel Bracelet bases are theta bases February 14, 2022 10 / 27



The Gross-Siebert program

Scattering diagrams

The data of these walls is encoded in a “scattering diagram.”

1 + y

1 + x−1

1 + x−1y

Walls labelled with functions indicating the corresponding transition functions.

Travis Mandel Bracelet bases are theta bases February 14, 2022 11 / 27



The Gross-Siebert program

Broken lines

Broken lines with ends (p,Q) — tropical version of the holomorphic disks whose
behavior at∞ is determined by p, and whose boundary is on the fiber over Q.

p

1 + y

1 + x−1

1 + x−1y

•

x

xy

y

Q

Travis Mandel Bracelet bases are theta bases February 14, 2022 12 / 27



The Gross-Siebert program

Theta functions

I Theta function for each p ∈ TZB, given locally by:

ϑp,Q :=
∑

Ends(γ)=(p,Q)

aγzmγ ,

where aγzmγ is the monomial attached to the last straight segment of γ.

I Gross-Hacking-Keel (2015): Used this to define canonical bases for log
Calabi-Yau surfaces.

I Gross-Hacking-Keel-Kontsevich, (2018): Used this to define canonical bases for
cluster algebras.
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The Gross-Siebert program

Scattering diagrams from cluster algebras

I A cluster algebra is determined by a seed.

I Roughly, a seed s consists of a lattice M ∼= Zr , a skew-symmetric form Λ on M,
and a finite set of vector E := {ei}i∈I ⊂ M.

I Denote the torus algebra

C[M] := C[zu|u ∈ M][zuzv = zu+v ].

The cluster variety A is obtained by gluing together algebraic tori SpecC[M],
called clusters, via certain birational maps called mutations. The (upper) cluster
algebra is Γ(A,OA).

I This s determines an “initial” scattering diagram Din
s in MR with walls (eΛ⊥

i , 1 + zei ).
These are “incoming” walls because the support eΛ⊥

i contains the exponent ei .

I There is a unique “consistent” scattering diagram Ds obtained by adding only
“outgoing” walls to Din

s . GHKK use this scattering diagram to construct the theta
functions ϑm, m ∈ M.

Travis Mandel Bracelet bases are theta bases February 14, 2022 14 / 27



The Gross-Siebert program

Scattering diagrams from cluster algebras

I A cluster algebra is determined by a seed.

I Roughly, a seed s consists of a lattice M ∼= Zr , a skew-symmetric form Λ on M,
and a finite set of vector E := {ei}i∈I ⊂ M.

I Denote the torus algebra

C[M] := C[zu|u ∈ M][zuzv = zu+v ].

The cluster variety A is obtained by gluing together algebraic tori SpecC[M],
called clusters, via certain birational maps called mutations. The (upper) cluster
algebra is Γ(A,OA).

I This s determines an “initial” scattering diagram Din
s in MR with walls (eΛ⊥

i , 1 + zei ).
These are “incoming” walls because the support eΛ⊥

i contains the exponent ei .

I There is a unique “consistent” scattering diagram Ds obtained by adding only
“outgoing” walls to Din

s . GHKK use this scattering diagram to construct the theta
functions ϑm, m ∈ M.

Travis Mandel Bracelet bases are theta bases February 14, 2022 14 / 27



The Gross-Siebert program

Scattering diagrams from cluster algebras

I A cluster algebra is determined by a seed.

I Roughly, a seed s consists of a lattice M ∼= Zr , a skew-symmetric form Λ on M,
and a finite set of vector E := {ei}i∈I ⊂ M.

I Denote the torus algebra

C[M] := C[zu|u ∈ M][zuzv = zu+v ].

The cluster variety A is obtained by gluing together algebraic tori SpecC[M],
called clusters, via certain birational maps called mutations. The (upper) cluster
algebra is Γ(A,OA).

I This s determines an “initial” scattering diagram Din
s in MR with walls (eΛ⊥

i , 1 + zei ).
These are “incoming” walls because the support eΛ⊥

i contains the exponent ei .

I There is a unique “consistent” scattering diagram Ds obtained by adding only
“outgoing” walls to Din

s . GHKK use this scattering diagram to construct the theta
functions ϑm, m ∈ M.

Travis Mandel Bracelet bases are theta bases February 14, 2022 14 / 27



The Gross-Siebert program

Scattering diagrams from cluster algebras

I A cluster algebra is determined by a seed.

I Roughly, a seed s consists of a lattice M ∼= Zr , a skew-symmetric form Λ on M,
and a finite set of vector E := {ei}i∈I ⊂ M.

I Denote the torus algebra

C[M] := C[zu|u ∈ M][zuzv = zu+v ].

The cluster variety A is obtained by gluing together algebraic tori SpecC[M],
called clusters, via certain birational maps called mutations. The (upper) cluster
algebra is Γ(A,OA).

I This s determines an “initial” scattering diagram Din
s in MR with walls (eΛ⊥

i , 1 + zei ).
These are “incoming” walls because the support eΛ⊥

i contains the exponent ei .

I There is a unique “consistent” scattering diagram Ds obtained by adding only
“outgoing” walls to Din

s . GHKK use this scattering diagram to construct the theta
functions ϑm, m ∈ M.

Travis Mandel Bracelet bases are theta bases February 14, 2022 14 / 27



The Gross-Siebert program

Scattering diagrams from cluster algebras

I A cluster algebra is determined by a seed.

I Roughly, a seed s consists of a lattice M ∼= Zr , a skew-symmetric form Λ on M,
and a finite set of vector E := {ei}i∈I ⊂ M.

I Denote the torus algebra

C[M] := C[zu|u ∈ M][zuzv = zu+v ].

The cluster variety A is obtained by gluing together algebraic tori SpecC[M],
called clusters, via certain birational maps called mutations. The (upper) cluster
algebra is Γ(A,OA).

I This s determines an “initial” scattering diagram Din
s in MR with walls (eΛ⊥

i , 1 + zei ).
These are “incoming” walls because the support eΛ⊥

i contains the exponent ei .

I There is a unique “consistent” scattering diagram Ds obtained by adding only
“outgoing” walls to Din

s . GHKK use this scattering diagram to construct the theta
functions ϑm, m ∈ M.

Travis Mandel Bracelet bases are theta bases February 14, 2022 14 / 27



The Gross-Siebert program

Quantum cluster algebras

I Quantum cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov): Use the
quantum torus algebra:

CΛ
t [M] := C[t±1][zu|u ∈ M]/〈zuzv = tΛ(u,v)zu+v 〉.

I Classical cluster mutation (wall-crossing): zm 7→ zm(1 + zej )Λ(ej ,m).

I Quantum cluster mutation: replace binomial coefficients with quantum binomial
coefficients:

(r
k

)
t := [r ]t !

[k ]t ![r−k ]t !
where [k ]t ! := [k ]t [k − 1]t · · · [2]t [1]t , and

[k ]t := tk−t−k

t−t−1 = t−k+1 + t−k+3 + . . .+ tk−3 + tk−1.

I Quantum mutation understood as conjugation by a quantum dilogarithm

Ψt (zei ) = exp

(
∞∑

k=1

(−1)k−1

k [k ]t
ẑkei

)
zm 7→ Ψt (zei )zmΨt (zei )−1.
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The Gross-Siebert program

Quantum scattering diagrams

The seed s determines an initial quantum scattering diagram, which in turn determines
a consistent quantum scattering diagram and quantum theta functions.

Ψt (zv1 )

Ψt (zv2 )

Ψt (zv1+v2 )

•

From this we construct broken lines and quantum theta functions like in the classical
setting.
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The Gross-Siebert program

Quantum theta functions and positivity

I Davison-M: The quantum theta functions satisfy the same desirable properties as
their classical counterparts.

I The key property here is positivity: the coefficients of monomials attached to
broken lines are always positive.

I Key idea for positivity proof:
I The (quantum) scattering diagrams can be understood in terms of quantum quiver

DT-invariants (Bridgeland’s stability scattering diagrams).
I Davison-Meinhardt’s integrality theorem implies these DT-invariants are positive in the

desired sense.
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The Gross-Siebert program

Positivity

Ψt (zv1 )

Ψt (zv2 )

Ψt (zv1+v2 )

1 + x−2

1 + y2

1 + x−3

1 + y3

σbad

I Chambers correspond to local coordinate systems for the cluster algebra.

I The theta functions are universally positive with respect to the scattering atlas;
i.e., they have Z≥0-coefficients not just in every cluster, and also in the formal local
coordinate systems associated to infinitesimal chambers.

I Theorem [M]: Theta functions are the atomic universally positive elements—every
universally positive element can be expressed as a Z≥0-linear combination of
theta functions.

I Strong positivity: The structure constants αpqr defined by ϑpϑq =
∑

r∈M αpqrϑr

are in Z≥0 (or Z≥0[t±1] in the quantum setting) [GHKK, DM].
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Surface skein algebras

Skein algebras

I Let Σ = (S,M) be a marked surface, i.e.:
I a closed surface S with boundary ∂S, and
I a finite collection of marked points M such that every component of ∂S is marked.

Marked points in S \ ∂S are called punctures.

I Sk(Σ) spanned by skeins: isotopy classes of immersions i : C → S such that
I C is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
I i(∂C) ⊂ M

modulo certain relations (next slide).

I The product of two elements of Sk(Σ) is the union of the corresponding
immersions of curves.

I Note: In the Fock-Goncharov perspective, one views Sk(Σ) as functions on the
moduli space A of decorated twisted SL2-local systems on Σ.
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Surface skein algebras

The skein relations

I Contractible arcs are equivalent to 0:

= 0 = 0

I Contractible loops are equivalent to −2:

= −2

I A loop around a puncture (called a peripheral loop) is equivalent to 2;

= 2

I The skein relation:

= +
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Surface skein algebras

Cluster structure of the skein algebra

I Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This
skein algebra Sk(Σ) has a cluster structure such that:
I (tagged) triangulations corresponding to clusters/seeds;
I (tagged) arcs correspond to cluster variables;
I Boundary arcs correspond to frozen variables.

I Mutation corresponds to flipping the diagonal of a quadrilateral:

γ
γ′
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Surface skein algebras

Tagged arcs

I An arc inside a self-folded triangle cannot be flipped:

I [Fomin-Shapiro-Thurston] deals with this by introducing “tagged arcs” whose ends
are tagged either plain or notched, subject to certain compatibility conditions:

m m

pp
α

ι(α)

I Enlarge Sk(Σ) to include tagged arcs.
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Surface skein algebras

Quantum skein algebra

In unpunctured cases, Muller describes a quantization Skt (Σ) of Sk(Σ):

I Skt (Σ) is an algebra over C[t±1] rather than over C. Denote q = t2.

I The curves are now links: when strands cross, we identify which strand is on top.

I The product ∗ is the superposition product — L1 ∗ L2 is obtained by placing L1 on
top of L2 (i.e., strands of L1 always cross over strands of L2). Multiplying arcs
which share endpoints results in additional powers of t .

I One makes the following modifications to the skein relations:
I Contractible loops are equivalent to −(q2 + q−2);

= −(q2 + q−2)

I The Kaufmann skein relation:

= q +q−1

The resulting algebra Skt (Σ) is a quantum cluster algebra.
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Surface skein algebras

Bangles and bracelets

I Musiker-Schiffler-Williams construct “bangle” and “bracelet” bases for Sk(Σ).

I Basis elements represented by unions of pairwise-disjoint and non-isotopic
Z≥1-weighted (tagged) arcs and non-peripheral loops:
I Bangles: weight-k arc or loop! k -th power of the arc or loop in Sk(Σ):

〈kL〉Bangles = 〈L〉kBangles.

I Bracelets: same for arcs, but a weight-k loop is given as in the figure:

Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

I Let Tk denote the k -th Chebyshev polynomial (of the first kind), characterized by

Tk (λ+ λ−1) = λk + λ−k .

Then 〈kL〉Bracelets = Tk 〈L〉Bracelets.

I Bracelets agree with Fock-Goncharov canonical coordinates:
Weight-k loop Trace of SL2-holonomy around the loop k times.
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Surface skein algebras

Quantum bracelet bases

I D. Thurston constructs quantum bracelet bases for unpunctured surfaces:

I Again given by disjoint unions of weighted arcs and loops;

I 〈kL〉Bracelets := Tk 〈L〉Bracelets.
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Surface skein algebras

Some past results and conjectures on positivity

I D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov).
Conjectured strong positivity for quantum bracelets.

I Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic
basis.

I Note: these positivity properties are known for (quantum) theta bases, so these
conjectures would follow immediately from proving that the (quantum) bracelet and
theta bases agree.
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Surface skein algebras

Bracelets = Thetas

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4k times a theta function.

Very rough outline:

I Gluing lemma;

I Annulus case (the Kronecker quiver) — explicit check;

I Unpunctured surface with one boundary marking;

I Show disjoint unions of bracelets! products.

Also find analogous results for the Fock-Goncharov X -spaces (moduli of framed
PGL2-local systems) and their quantum versions (Allegretti-Kim).
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PGL2-local systems) and their quantum versions (Allegretti-Kim).
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