Bracelet bases are theta bases

Travis Mandel (joint work with Fan Qin)

$$(\mathbf{1}) = (\mathbf{1}) + (\mathbf{1}) + (\mathbf{1}) + (\mathbf{1})$$

 Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.

- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry (the Gross-Siebert program) \rightsquigarrow Canonical "theta bases" for classical cluster algebras.

- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry (the Gross-Siebert program) \rightsquigarrow Canonical "theta bases" for classical cluster algebras.

 Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).

- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry		Canonical "theta bases" for
(the Gross-Siebert program)	\rightsquigarrow	classical cluster algebras.

- Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).
- ► Davison-M: GHKK arguments + DT theory ~→ Quantum theta bases.

- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry		Canonical "theta bases" for
(the Gross-Siebert program)	\rightsquigarrow	classical cluster algebras.

- Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).
- ► Davison-M: GHKK arguments + DT theory ~→ Quantum theta bases.
- Fock-Goncharov, Musiker-Schiffler-Williams: Functions on certain moduli of local systems on marked surfaces (i.e. skein algebras) have cluster algebra structures with canonical bases of "bracelets."

- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry		Canonical "theta bases" for
(the Gross-Siebert program)	\rightsquigarrow	classical cluster algebras.

- Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).
- ► Davison-M: GHKK arguments + DT theory ~→ Quantum theta bases.
- Fock-Goncharov, Musiker-Schiffler-Williams: Functions on certain moduli of local systems on marked surfaces (i.e. skein algebras) have cluster algebra structures with canonical bases of "bracelets."
- Muller, D. Thurston: Quantum skein algebras are quantum cluster algebras and have quantum bracelet bases.

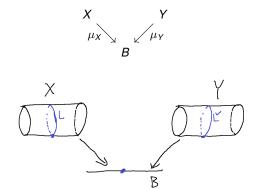
- Fomin-Zelevinsky, Fock-Goncharov: Cluster algebras should have canonical bases satisfying nice positivity properties.
- Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry		Canonical "theta bases" for
(the Gross-Siebert program)	\rightsquigarrow	classical cluster algebras.

- Also expect canonical bases for *quantum* cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov).
- ► Davison-M: GHKK arguments + DT theory ~→ Quantum theta bases.
- Fock-Goncharov, Musiker-Schiffler-Williams: Functions on certain moduli of local systems on marked surfaces (i.e. skein algebras) have cluster algebra structures with canonical bases of "bracelets."
- Muller, D. Thurston: Quantum skein algebras are quantum cluster algebras and have quantum bracelet bases.
- M-Qin: (Quantum) bracelet bases are (quantum) theta bases.

SYZ Conjecture

Mirror spaces X and Y should have dual special Lagrangian torus fibrations:

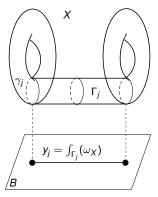


Local coordinate on B

Given X with Kähler form ω_X and SYZ fibration $\mu_X : X \to B$, try to construct Y:

Local coordinate on B

Given X with Kähler form ω_X and SYZ fibration $\mu_X : X \to B$, try to construct Y: Let $\gamma_1, \ldots, \gamma_n$ be a basis for $\pi_1(S_1^n) = \pi_1(\mu_X^{-1}(Q))$.



 $\{y_i | j = 1, ..., n\}$ form local coordinates on *B*.

Local coordinates for Y

- The y_i 's form local coordinates on B.
- Let $x_j := dy_j$. This determines lattices $T_{\mathbb{Z}}^*B \subset T^*B$ and $T_{\mathbb{Z}}B \subset TB$.
- Locally,

$$X = T^*B/T^*_{\mathbb{Z}}B$$
 and $Y = TB/T_{\mathbb{Z}}B$.

Local coordinates for Y

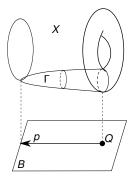
- The y_i 's form local coordinates on B.
- Let $x_j := dy_j$. This determines lattices $T_{\mathbb{Z}}^*B \subset T^*B$ and $T_{\mathbb{Z}}B \subset TB$.
- Locally,

$$X = T^*B/T^*_{\mathbb{Z}}B$$
 and $Y = TB/T_{\mathbb{Z}}B$.

- $w_j := x_j + iy_j$ gives local holomorphic coordinates for *Y*.
- $z_j := \exp(2\pi i w_j)$ gives local algebraic coordinates.

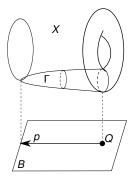
For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.

- For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.



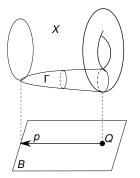
- For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

r



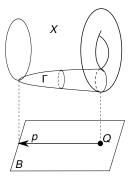
For
$$\Gamma \in D_{\rho,Q}$$
, let $y_{\Gamma} := \int_{\Gamma} \omega_X$.

- For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.



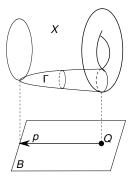
- For $\Gamma \in D_{\rho,Q}$, let $y_{\Gamma} := \int_{\Gamma} \omega_X$.
- ► Varying *Q* makes y_{Γ} a local function on *B*. Let $x_{\Gamma} := dy_{\Gamma}$.

- For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.



- For $\Gamma \in D_{\rho,Q}$, let $y_{\Gamma} := \int_{\Gamma} \omega_X$.
- ► Varying *Q* makes y_{Γ} a local function on *B*. Let $x_{\Gamma} := dy_{\Gamma}$.
- Let $z_{\Gamma} := \exp(2\pi i(x_{\Gamma} + iy_{\Gamma}))$.

- For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

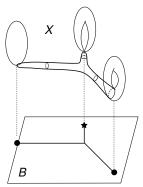


- For $\Gamma \in D_{p,Q}$, let $y_{\Gamma} := \int_{\Gamma} \omega_X$.
- ► Varying *Q* makes y_{Γ} a local function on *B*. Let $x_{\Gamma} := dy_{\Gamma}$.
- Let $z_{\Gamma} := \exp(2\pi i(x_{\Gamma} + iy_{\Gamma}))$.
- ► Local expression for ϑ_p near torus over Q given by:

$$\vartheta_{p,Q} := \sum_{\Gamma \in D_{p,Q}} Z_{\Gamma}.$$

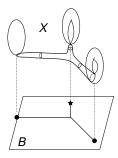
Holomorphic disks

Typically, some fibers are singular (e.g., pinched tori). This results in more holomorphic disks.



The Gross-Siebert program

The Gross-Siebert program

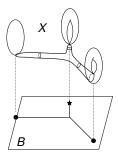


The graph in *B* is a **tropical disk**.

DQC

The Gross-Siebert program

The Gross-Siebert program

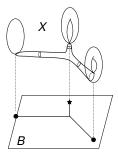


The graph in *B* is a **tropical disk**.

The Gross-Siebert Program:

Use the tropical picture to construct mirrors Y with canonical theta function bases for their rings of global functions. The Gross-Siebert program

The Gross-Siebert program



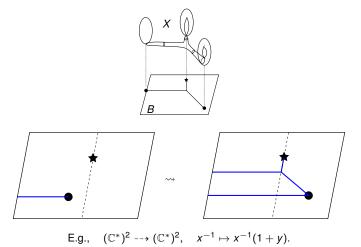
The graph in *B* is a tropical disk.

The Gross-Siebert Program:

- Use the tropical picture to construct mirrors Y with canonical theta function bases for their rings of global functions.
- ▶ Use log geometry to relate these bases to curve counts in *X*.
 - [M, Keel-Yu, Gross-Siebert]; also [Tseng-You] (using multi-root stacks instead of log geometry), and others from symplectic perspective.

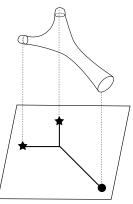
Wall-crossing

Holomorphic disks over *B* result in walls where our local coordinate system changes:



Scattering

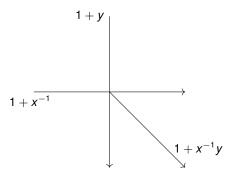
The initial walls can interact to form new walls:



DQC

Scattering diagrams

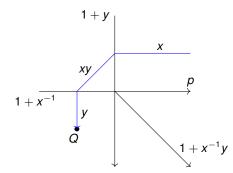
The data of these walls is encoded in a "scattering diagram."



Walls labelled with functions indicating the corresponding transition functions.

Broken lines

Broken lines with ends (p, Q) — tropical version of the holomorphic disks whose behavior at ∞ is determined by p, and whose boundary is on the fiber over Q.



Theta functions

• Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{\rho,Q} := \sum_{\operatorname{Ends}(\gamma)=(\rho,Q)} a_{\gamma} z^{m_{\gamma}},$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

Theta functions

• Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{\rho,Q} := \sum_{\operatorname{Ends}(\gamma)=(\rho,Q)} a_{\gamma} z^{m_{\gamma}},$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

 Gross-Hacking-Keel (2015): Used this to define canonical bases for log Calabi-Yau surfaces.

Theta functions

• Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{\rho,Q} := \sum_{\operatorname{Ends}(\gamma)=(\rho,Q)} a_{\gamma} z^{m_{\gamma}},$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

- Gross-Hacking-Keel (2015): Used this to define canonical bases for log Calabi-Yau surfaces.
- Gross-Hacking-Keel-Kontsevich, (2018): Used this to define canonical bases for cluster algebras.

- A cluster algebra is determined by a seed.
- ► Roughly, a seed s consists of a lattice M ≅ Z^r, a skew-symmetric form ∧ on M, and a finite set of vector E := {e_i}_{i∈I} ⊂ M.

- A cluster algebra is determined by a seed.
- ► Roughly, a seed s consists of a lattice M ≅ Z^r, a skew-symmetric form ∧ on M, and a finite set of vector E := {e_i}_{i∈I} ⊂ M.
- Denote the torus algebra

$$\mathbb{C}[M] := \mathbb{C}[z^u | u \in M][z^u z^v = z^{u+v}].$$

- A cluster algebra is determined by a seed.
- Roughly, a seed s consists of a lattice M ≅ Z^r, a skew-symmetric form ∧ on M, and a finite set of vector E := {e_i}_{i∈I} ⊂ M.
- Denote the torus algebra

$$\mathbb{C}[M] := \mathbb{C}[z^u | u \in M][z^u z^v = z^{u+v}].$$

The cluster variety \mathcal{A} is obtained by gluing together algebraic tori Spec $\mathbb{C}[M]$, called clusters, via certain birational maps called **mutations**. The (upper) cluster algebra is $\Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$.

- A cluster algebra is determined by a seed.
- Roughly, a seed s consists of a lattice M ≅ Z^r, a skew-symmetric form ∧ on M, and a finite set of vector E := {e_i}_{i∈I} ⊂ M.
- Denote the torus algebra

$$\mathbb{C}[M] := \mathbb{C}[z^u | u \in M][z^u z^v = z^{u+v}].$$

The cluster variety \mathcal{A} is obtained by gluing together algebraic tori Spec $\mathbb{C}[M]$, called clusters, via certain birational maps called **mutations**. The (upper) cluster algebra is $\Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$.

► This **s** determines an "initial" scattering diagram $\mathfrak{D}_{\mathbf{s}}^{\text{in}}$ in $M_{\mathbb{R}}$ with walls $(e_i^{\wedge \perp}, 1 + z^{e_i})$. These are "incoming" walls because the support $e_i^{\wedge \perp}$ contains the exponent e_i .

- A cluster algebra is determined by a seed.
- Roughly, a seed s consists of a lattice M ≅ Z^r, a skew-symmetric form ∧ on M, and a finite set of vector E := {e_i}_{i∈I} ⊂ M.
- Denote the torus algebra

$$\mathbb{C}[M] := \mathbb{C}[z^u | u \in M][z^u z^v = z^{u+v}].$$

The cluster variety A is obtained by gluing together algebraic tori Spec $\mathbb{C}[M]$, called clusters, via certain birational maps called **mutations**. The (upper) cluster algebra is $\Gamma(A, \mathcal{O}_A)$.

- This s determines an "initial" scattering diagram Dⁱⁿ_s in M_ℝ with walls (e^{∧⊥}_i, 1 + z^{e_i}). These are "incoming" walls because the support e^{∧⊥}_i contains the exponent e_i.
- ► There is a unique "consistent" scattering diagram \mathfrak{D}_s obtained by adding only "outgoing" walls to \mathfrak{D}_s^{in} . GHKK use this scattering diagram to construct the theta functions ϑ_m , $m \in M$.

Quantum cluster algebras

Quantum cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov): Use the quantum torus algebra:

$$\mathbb{C}_t^{\Lambda}[M] := \mathbb{C}[t^{\pm 1}][z^u|u \in M]/\langle z^u z^v = t^{\Lambda(u,v)} z^{u+v} \rangle.$$

Quantum cluster algebras

Quantum cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov): Use the quantum torus algebra:

$$\mathbb{C}_t^{\Lambda}[M] := \mathbb{C}[t^{\pm 1}][z^u | u \in M] / \langle z^u z^v = t^{\Lambda(u,v)} z^{u+v} \rangle.$$

• Classical cluster mutation (wall-crossing): $z^m \mapsto z^m (1 + z^{e_j})^{\Lambda(e_j,m)}$.

Quantum cluster algebras

Quantum cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov): Use the quantum torus algebra:

$$\mathbb{C}_t^{\Lambda}[M] := \mathbb{C}[t^{\pm 1}][z^u | u \in M] / \langle z^u z^v = t^{\Lambda(u,v)} z^{u+v} \rangle.$$

- ► Classical cluster mutation (wall-crossing): $z^m \mapsto z^m (1 + z^{e_j})^{\Lambda(e_j,m)}$.
- Quantum cluster mutation: replace binomial coefficients with quantum binomial coefficients: $\binom{r}{k}_t := \frac{[r]_t!}{[k]_t![r-k]_t!}$ where $[k]_t! := [k]_t[k-1]_t \cdots [2]_t[1]_t$, and $[k]_t := \frac{t^k t^{-k}}{t t^{-1}} = t^{-k+1} + t^{-k+3} + \ldots + t^{k-3} + t^{k-1}$.

Quantum cluster algebras

Quantum cluster algebras (Berenstein-Zelevinsky, Fock-Goncharov): Use the quantum torus algebra:

$$\mathbb{C}^{\Lambda}_{t}[M] := \mathbb{C}[t^{\pm 1}][z^{u}|u \in M]/\langle z^{u}z^{v} = t^{\Lambda(u,v)}z^{u+v}\rangle.$$

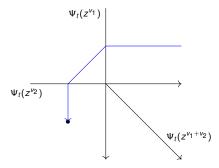
- ► Classical cluster mutation (wall-crossing): $z^m \mapsto z^m (1 + z^{e_j})^{\Lambda(e_j,m)}$.
- ▶ Quantum cluster mutation: replace binomial coefficients with quantum binomial coefficients: $\binom{r}{k}_t := \frac{[r]_t!}{[k]_t![r-k]_t!}$ where $[k]_t! := [k]_t[k-1]_t \cdots [2]_t[1]_t$, and $[k]_t := \frac{t^k t^{-k}}{t t^{-1}} = t^{-k+1} + t^{-k+3} + \ldots + t^{k-3} + t^{k-1}$.
- Quantum mutation understood as conjugation by a quantum dilogarithm

$$\Psi_t(z^{e_i}) = \exp\left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k[k]_t} \hat{z}^{ke_i}\right)$$
$$z^m \mapsto \Psi_t(z^{e_i}) z^m \Psi_t(z^{e_i})^{-1}.$$

The Gross-Siebert program

Quantum scattering diagrams

The seed **s** determines an initial quantum scattering diagram, which in turn determines a consistent quantum scattering diagram and quantum theta functions.



From this we construct broken lines and quantum theta functions like in the classical setting.

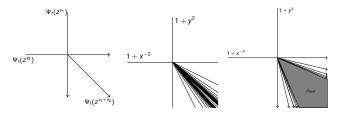
Davison-M: The quantum theta functions satisfy the same desirable properties as their classical counterparts.

- Davison-M: The quantum theta functions satisfy the same desirable properties as their classical counterparts.
- The key property here is positivity: the coefficients of monomials attached to broken lines are always positive.

- Davison-M: The quantum theta functions satisfy the same desirable properties as their classical counterparts.
- The key property here is positivity: the coefficients of monomials attached to broken lines are always positive.
- Key idea for positivity proof:

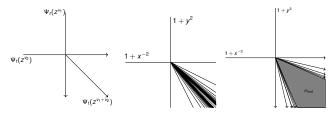
- Davison-M: The quantum theta functions satisfy the same desirable properties as their classical counterparts.
- The key property here is positivity: the coefficients of monomials attached to broken lines are always positive.
- Key idea for positivity proof:
 - The (quantum) scattering diagrams can be understood in terms of quantum quiver DT-invariants (Bridgeland's stability scattering diagrams).

- Davison-M: The quantum theta functions satisfy the same desirable properties as their classical counterparts.
- The key property here is positivity: the coefficients of monomials attached to broken lines are always positive.
- Key idea for positivity proof:
 - The (quantum) scattering diagrams can be understood in terms of quantum quiver DT-invariants (Bridgeland's stability scattering diagrams).
 - Davison-Meinhardt's integrality theorem implies these DT-invariants are positive in the desired sense.

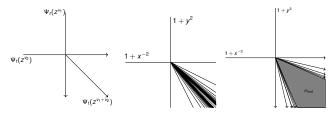


Chambers correspond to local coordinate systems for the cluster algebra.

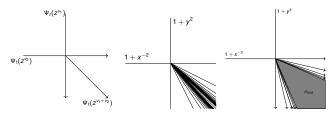
DQC



- Chambers correspond to local coordinate systems for the cluster algebra.
- ► The theta functions are universally positive with respect to the scattering atlas; i.e., they have Z≥0-coefficients not just in every cluster, and also in the formal local coordinate systems associated to infinitesimal chambers.



- Chambers correspond to local coordinate systems for the cluster algebra.
- ► The theta functions are universally positive with respect to the scattering atlas; i.e., they have Z≥0-coefficients not just in every cluster, and also in the formal local coordinate systems associated to infinitesimal chambers.
- ► Theorem [M]: Theta functions are the **atomic** universally positive elements—every universally positive element can be expressed as a Z_{≥0}-linear combination of theta functions.



- Chambers correspond to local coordinate systems for the cluster algebra.
- ► The theta functions are universally positive with respect to the scattering atlas; i.e., they have Z≥0-coefficients not just in every cluster, and also in the formal local coordinate systems associated to infinitesimal chambers.
- ► Theorem [M]: Theta functions are the **atomic** universally positive elements—every universally positive element can be expressed as a Z_{≥0}-linear combination of theta functions.
- Strong positivity: The structure constants α_{pqr} defined by ϑ_pϑ_q = ∑_{r∈M} α_{pqr}ϑ_r are in ℤ_{≥0} (or ℤ_{≥0}[t^{±1}] in the quantum setting) [GHKK, DM].

- Let $\Sigma = (\mathbf{S}, \mathbf{M})$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.

- Let $\Sigma = (S, M)$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.
- ► Sk(Σ) spanned by **skeins**: isotopy classes of immersions *i* : *C* → **S** such that
 - C is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
 - ► $i(\partial C) \subset \mathbf{M}$

modulo certain relations (next slide).

- Let $\Sigma = (S, M)$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.
- ► Sk(Σ) spanned by **skeins**: isotopy classes of immersions *i* : *C* → **S** such that
 - *C* is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
 - ► $i(\partial C) \subset \mathbf{M}$

modulo certain relations (next slide).

The product of two elements of Sk(Σ) is the union of the corresponding immersions of curves.

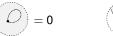
- Let $\Sigma = (\mathbf{S}, \mathbf{M})$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.
- ► Sk(Σ) spanned by **skeins**: isotopy classes of immersions *i* : *C* → **S** such that
 - *C* is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
 - ► $i(\partial C) \subset \mathbf{M}$

modulo certain relations (next slide).

- The product of two elements of Sk(Σ) is the union of the corresponding immersions of curves.
- Note: In the Fock-Goncharov perspective, one views Sk(Σ) as functions on the moduli space A of decorated twisted SL₂-local systems on Σ.

The skein relations

Contractible arcs are equivalent to 0:



► Contractible loops are equivalent to -2:

A loop around a puncture (called a peripheral loop) is equivalent to 2;

= -2

The skein relation:

Cluster structure of the skein algebra

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters/seeds;
 - (tagged) arcs correspond to cluster variables;
 - Boundary arcs correspond to frozen variables.

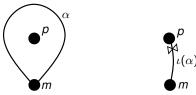
Cluster structure of the skein algebra

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters/seeds;
 - (tagged) arcs correspond to cluster variables;
 - Boundary arcs correspond to frozen variables.
- Mutation corresponds to flipping the diagonal of a quadrilateral:

Tagged arcs

An arc inside a self-folded triangle cannot be flipped:

[Fomin-Shapiro-Thurston] deals with this by introducing "tagged arcs" whose ends are tagged either plain or notched, subject to certain compatibility conditions:



Tagged arcs

An arc inside a self-folded triangle cannot be flipped:

[Fomin-Shapiro-Thurston] deals with this by introducing "tagged arcs" whose ends are tagged either plain or notched, subject to certain compatibility conditions:

• Enlarge $Sk(\Sigma)$ to include tagged arcs.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

► Sk_t(Σ) is an algebra over $\mathbb{C}[t^{\pm 1}]$ rather than over \mathbb{C} . Denote $q = t^2$.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $Sk_t(\Sigma)$ is an algebra over $\mathbb{C}[t^{\pm 1}]$ rather than over \mathbb{C} . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $Sk_t(\Sigma)$ is an algebra over $\mathbb{C}[t^{\pm 1}]$ rather than over \mathbb{C} . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂).

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $Sk_t(\Sigma)$ is an algebra over $\mathbb{C}[t^{\pm 1}]$ rather than over \mathbb{C} . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- ► The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂). Multiplying arcs which share endpoints results in additional powers of t.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $Sk_t(\Sigma)$ is an algebra over $\mathbb{C}[t^{\pm 1}]$ rather than over \mathbb{C} . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- ► The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂). Multiplying arcs which share endpoints results in additional powers of t.
- One makes the following modifications to the skein relations:
 - Contractible loops are equivalent to $-(q^2 + q^{-2})$;

$$\bigcirc = -(q^2+q^{-2})$$

The Kaufmann skein relation:

$$= q + q^{-1}$$

The resulting algebra $Sk_t(\Sigma)$ is a quantum cluster algebra.

Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).

DQC

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- Basis elements represented by unions of pairwise-disjoint and non-isotopic Z>1-weighted (tagged) arcs and non-peripheral loops:

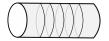
- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ► Basis elements represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - **Bangles**: weight-*k* arc or loop $\iff k$ -th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ► Basis elements represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - **Bangles**: weight-*k* arc or loop *κ*→ *k*-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:



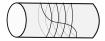
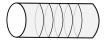


Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ► Basis elements represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - **Bangles**: weight-*k* arc or loop *κ*→ *k*-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:



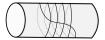


Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

Let T_k denote the k-th Chebyshev polynomial (of the first kind), characterized by

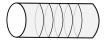
$$T_k(\lambda + \lambda^{-1}) = \lambda^k + \lambda^{-k}.$$

Then $\langle kL \rangle_{\text{Bracelets}} = T_k \langle L \rangle_{\text{Bracelets}}$.

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ► Basis elements represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - Bangles: weight-k arc or loop κ→ k-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:



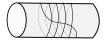


Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

Let T_k denote the k-th Chebyshev polynomial (of the first kind), characterized by

$$T_k(\lambda + \lambda^{-1}) = \lambda^k + \lambda^{-k}.$$

Then $\langle kL \rangle_{\text{Bracelets}} = T_k \langle L \rangle_{\text{Bracelets}}$.

Bracelets agree with Fock-Goncharov canonical coordinates:
Weight-k loop ~ Trace of SL₂-holonomy around the loop k times.

Travis Mandel

Quantum bracelet bases

D. Thurston constructs quantum bracelet bases for unpunctured surfaces:

Quantum bracelet bases

- D. Thurston constructs quantum bracelet bases for unpunctured surfaces:
- Again given by disjoint unions of weighted arcs and loops;

Quantum bracelet bases

- D. Thurston constructs quantum bracelet bases for unpunctured surfaces:
- Again given by disjoint unions of weighted arcs and loops;
- $\blacktriangleright \langle kL \rangle_{\text{Bracelets}} := T_k \langle L \rangle_{\text{Bracelets}}.$

Some past results and conjectures on positivity

 D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.

Some past results and conjectures on positivity

- D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.
- Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic basis.

Some past results and conjectures on positivity

- D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.
- Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic basis.
- Note: these positivity properties are known for (quantum) theta bases, so these conjectures would follow immediately from proving that the (quantum) bracelet and theta bases agree.

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

nac

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4^k times a theta function.

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4^k times a theta function.

Very rough outline:

Gluing lemma;

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4^k times a theta function.

Very rough outline:

- Gluing lemma;
- Annulus case (the Kronecker quiver) explicit check;
- Unpunctured surface with one boundary marking;

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4^k times a theta function.

Very rough outline:

- Gluing lemma;
- Annulus case (the Kronecker quiver) explicit check;
- Unpunctured surface with one boundary marking;
- Show disjoint unions of bracelets +---- products.

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*Except for notched arcs in the once-punctured torus. These equal 4^k times a theta function.

Very rough outline:

- Gluing lemma;
- Annulus case (the Kronecker quiver) explicit check;
- Unpunctured surface with one boundary marking;
- Show disjoint unions of bracelets +---- products.

Also find analogous results for the Fock-Goncharov \mathcal{X} -spaces (moduli of framed PGL₂-local systems) and their quantum versions (Allegretti-Kim).