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Planar projective curves

Let P € Chom(Z,, Zy, Z5] and
V(P)={P =0} c CP2%

V (P) satisfies wonderful properties :
» generically a compact smooth Riemann surface;
» connected ;

» has a constant genus %(d —1)(d —2).
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» d=1ord=2: sphere

» d=3: torus

» d=4:genus g =3

> dimg Ch™[Zy, Z1, Zo)] ~a 2g.

» Same for the moduli space V; of degree d projective curves.
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Geometry of planar projective curves

» So, topology is always the same for fixed degree complex
curves.

6/54



Geometry of planar projective curves

» So, topology is always the same for fixed degree complex
curves.

» What about the geometry if V/(P) is equipped with the
restriction of the ambient metric gpg ?

6/54



Geometry of planar projective curves

» So, topology is always the same for fixed degree complex
curves.

» What about the geometry if V/(P) is equipped with the
restriction of the ambient metric gpg ?

» Volume of V(P)?

6/54



Geometry of planar projective curves

» So, topology is always the same for fixed degree complex
curves.

» What about the geometry if V/(P) is equipped with the
restriction of the ambient metric gpg ?

» Volume of V(P)?

W. Wirtinger theorem

VP, Vol(V(P)) = d.

6/54



Geometry of planar projective curves

6/54

So, topology is always the same for fixed degree complex
curves.

What about the geometry if V(P) is equipped with the
restriction of the ambient metric gpg ?

Volume of V(P)?
W. Wirtinger theorem

VP, Vol(V(P)) = d.

However V' can have very different shapes...



Concentrated curves

V(Z5)
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Concentrated curves

V(Z8) and a perturbation V(Z¢ + Q)
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Equidistributed curves
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Equidistributed curves

|

V(Ly---Lg) and a perturbation V(Ly -+ Lg + €Q)
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Random projective curves

If P is taken at random, are there noticeable statistical
geometric behaviours of V(P)?
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Random projective curves

If P is taken at random, are there noticeable statistical
geometric behaviours of V(P)?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a

sequence (V(Py))4en of increasing degree random complex
curves gets equidistributed in CP?.
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» Complex Fubini-Study measure :
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» Complex Fubini-Study measure :

A AAL

_ 0 1 2
P = E aioiligii AR
io+i1+ia=d 0-0102

where Raigi iy, S@igi i, are 1.i.d. standard normal variables.
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i0 i1 r7ia

P= w . L0022y
— 101119 —
\/’Lo!’Ll!’LQ!
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where Raigi iy, S@igi i, are 1.i.d. standard normal variables.

» This is the Gaussian measure associated to the
Fubini-Study L?-scalar product on the space of
polynomials :
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Complex Fubini-Study measure :

A AAL

0 1 2
P = E aioiligii AR
io+i1+iz=d 0-0102

where Raigi iy, S@igi i, are 1.i.d. standard normal variables.

This is the Gaussian measure associated to the
Fubini-Study L?-scalar product on the space of
polynomials :

P(2)Q(Z)

<P7 Q>FS = deollfs.

cPn

It is invariant under the symmetries of CP2.

This measure generalizes to the space H°(X, L% of
holomorphic sections of powers of an ample line bundle L4
over a compact Kahler manifold X.



Systoles of random curves

What about the length of the systole of the random complex
curve : its shortest non-contractible real loop 7
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The origins : hyperbolic surfaces

Let

M, = { genus g compact smooth surface

with a metric of curvature — 1}.
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The origins : hyperbolic surfaces

Let
M, = { genus g compact smooth surface
with a metric of curvature — 1}.
» Curvature —1 implies that g > 2.
> Gauss-Bonnet : 5-Area(S) = 2g — 2.
» dimgp M, =69 — 6
» Natural probability measure : Proby p (Weil-Petersson).
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My, = { genus g compact smooth surface

with a metric of curvature — 1}.
Theorem (M. Mirzakhani 2013). There exist 0 < ¢, C such

that for any 0 < e <1,

Vg > 2, ce < Probyp [Length of the systole < e] < Cé.
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Random projective curves

Vg = {degree d projective planar curve equipped

with the restriction of \/ggps}

> Wirtinger : Area(V) = d? ~ 2g

» Non-constant curvature... however by Gauss-Bonnet :

average of curvature over V(P) = —1.

» dimg Vg ~g—o0 29
» Natural probability measure : Probgg.
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Random projective curves

Vg = {degree d projective planar curve}

Theorem 1. There exists C' > 0, for all 0 < e < 1,

_C
6

Vd>1, e < Probpg [Length Nz of the systole < 6].
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Z(P)c CP?

Theorem 1’ There exists ¢ > 0,

vd > L, e< Probpg |3 Yyt 7Fch2aVi7Lengthgps(7’i) < 1/\/;Z

and [71]1 ) [’chz]
is an independent family of H; (V(P))} .
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Theorem 1’ There exists ¢ > 0,

Vd>1, ¢ <Probps|3 71, ,Veaz, Vi, Length (7:) < 1/Vd
and [71]7 R [’chz]
is an independent family of H; (V(P))} .

Mirzakhani-Petri 2017 : this is false for hyperbolic random
curves.



Very useless deterministic Corollary. There exists ¢ > 0,
such that for any complex projective curve V(P) of degree d,

dim H, (V(P)) > cd®.
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Very useless deterministic Corollary. There exists ¢ > 0,
such that for any complex projective curve V(P) of degree d,

dim H, (V(P)) > cd®.

In higher dimensions,
» complex curves become complex hypersurfaces ;
» loops become Lagrangian submanifolds ;

» the useless deterministic bound becomes an non-trivial
estimate for homological Lagrangian representatives.
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Higher dimensions

Let P € Chom[Zy, Z1, -, Zy).
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Higher dimensions

Let P € Chom[Zy, Z1,- -+ , Z,).Then

V(P) = {P =0} c CP"

> is generically a smooth complex hypersurface, or 2n — 2
real submanifold,

> with a constant diffeomorphism type.

» If equipped with the restriction of the ambient symplectic
form wgg, then they have a constant symplectomorphism
type.

» Hence, if we prove that a property of symplectic nature is
true with positive probability, then it is true for any
hypersurface.
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Lefschetz theorem

Vk <n—1, Hy(V(P)) = Hy(CP").
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Lefschetz theorem

Vk <n—1, Hy(V(P)) = Hy(CP").

» In other words, the only proper topological complexity of
V(P) lies in the (n — 1)-dimensional submanifolds of V(P).
» Same for homotopy groups.
» In particular, V(P) is
» connected for n > 2 and
» simply connected for n > 3.
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Chern computation

dim H,_1(V(P)) ~ d".
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Chern computation

dim H,_1(V(P)) ~ d".

» = For n =2, V C CP?is a connected complex curve and
its interesting topology lies in H;(V'), whose dimension
grows like d?.

» = Forn =3,V C CP?is a connected and simply
connected complex surface and its interesting homology lies
in Hy(V'), that is for real surfaces inside it.
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Affine algebraic Lagrangians

Z(p) N R"™

If p e Rlz1,- -, zp) then
V(p) NR"

is Lagrangian in (V(p), wojv(p))-
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Projective algebraic Lagrangians

IfPeRY [Zy,--,Zy) then

V(P)NnRP"

is Lagrangian in (V(P),wrgjv(p))-
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Probabilistic Theorem 2’ Let £ C R" °4 be any compact
hypersurface with x(£) # 0. Then

de >0, Vd > 1, ¢ < Prob [3 L1, , Legn pairwise disjoint,

Lagrangian,
Vi,ﬁi ~dif f ﬁ, diamﬁi < 1/\/&
and [L41],-- -, [Legn] form an independent family of H,,_; (V(P))} .



Recall that for a degree d polynomial P,

dim H, (V(P)) ~g_so0 dim Hy_1(V(P)) ~ d".
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Recall that for a degree d polynomial P,
dim H,(V(P)) ~4—00o dim H,,_1(V(P)) ~ d".

Deterministic Corollary 2. Let £ C R" °dd be any compact
hypersurface with x(£) # 0. Then

Je>0,¥d>1, VP eCY,  3L1, -, Legn C V(P)

> pairwise disjoint,

» diffeomorphic to L,

» Lagrangian submanifolds of (V(P),OJFS‘V(P)),

» [L4], -+, [Legn] form an independent family of H,,_1(V(P)).



For any real hypersurface £ with non-vanishing Euler
characteristic and every large enough degree, there exists a basis
of H,,_1(V(P)) such that a uniform proportion of its elements
are represented by Lagrangian submanifolds diffeomorphic to L.
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Former results

From Picard-Lefschetz theory :
Second Lefschetz theorem (A. Andreotti, T. Frenkel
1968) The space

ker (Hn_l(X) — Hn_l(CPn))

is generated by Lagrangian spheres.
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From Picard-Lefschetz theory :
Second Lefschetz theorem (A. Andreotti, T. Frenkel
1968) The space

ker (H,,—1(X) — H,—1(CP"))

is generated by Lagrangian spheres.

From tropical arguments :

Theorem (G. Mikhalkin 2004). There exists cd™ disjoint
Lagrangian spheres and cd"™ Lagrangian tori, whose classes in
H,_1(V(P)) are independent, with ¢ explicit and natural.



From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let £ C R" as
before. Then there exists ¢ > 0, such that for d > 1,

¢ < Probpgr [3 at least cvVd components of V(P) N RP"
diffeomorphic to [Z].
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From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let £ C R" as
before. Then there exists ¢ > 0, such that for d > 1,

¢ < Probpgr [3 at least cvVd components of V(P) N RP"
diffeomorphic to [Z].

Corollary. At least evd' disjoint Lagrangians diffeomorphic
to £ in any V(P).



Proof of Theorem 1 (systoles)

Theorem 1. There exists ¢ > 0,

Vd > 1, ¢ < Probpg [Length\/ang of the systole < 1].
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Theorem 1” There exists ¢ > 0,
Vz € CP",Yd > 1, ¢ < Probpg [3 ~ C V(P)N Bz,

Length(y) <

~ non contractible|.

SRR

[ S

)



Theorem 1” There exists ¢ > 0,
Vx € CP",Vd > 1, ¢ < Probpg|3 v C V(P)N B(x,

Length(y) <

[ S

~ non contractible|.

Clearly : Theorem 17 = Theorem 1.
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Artificial non-contractible curve

Pick a generic Q € R} [Zy, Z1, Zo).

hom
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Artificial non-contractible curve

Pick a generic Q € R} [Zo, Z1, Z5]. Then

hom
V(Q) ~T? c CP2

By Bézout theorem V(Q) NV (Zp) = {3 points},

/\

Deshomogeneization : V[Q(l, 21, 22)} C C?
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Rescaling

\

IS

7

V[Q(l, Vidz, \/gzg)} c C?
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Re-homogenization
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Re-homogenization

If Qd = ZgQ(l,\/&(%, e 7%))7 then
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Barrier method

The random P writes

P = aQq+R,
with a ~ Nc(0,1) and R € Qi random independent
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Barrier method

The random P writes

P = aQq+R,
with a ~ Nc(0,1) and R € Qi random independent
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~_ - Z(aQs + R)

Proposition. With uniform probability in d, R does not
destroy the toric shape of V(Qy) in B(x,1/V/d).
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Indeed, over B(1/v/d) and after rescaling,
> (4 looks like the fixed polynomial

¢:BcC?—=C;

> R looks like a random holomorphic function

r:B— C;

» P looks like
ag+r:B— C.

> Everything is asymptotically independent of d;
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Hence,

» If |a] > 1 and ||r|| < 1 then V(aq + r) has the same
topology of V(q).
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» If |a] > 1 and ||r|| < 1 then V(aq + r) has the same
topology of V(q).
» The probability that this happens is positive;

» Consequently, the probability that V(a@, + R) has the
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Hence,

| 4

>
>

If |a| > 1 and ||7|| < 1 then V(aq + r) has the same
topology of V(q).

The probability that this happens is positive;

Consequently, the probability that V(aQ, + R) has the
topology of V(Qy) in the small ball B(xz,1/v/d) is

uniformly positive.

Hence the Proposition.



Proof of Theorem 1’

Theorem 1’ There exists ¢ > 0,

Vd > 1, ¢ < Probpg|3 71, Yeaz, Vi, diam(vy;) < 1/\/g

and [v1],- -+, [Yeq2]is an independent family of H (V(P))}
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Proof of Theorem 1’

Theorem 1’ There exists ¢ > 0,

Vd > 1, ¢ < Probpg {EI Y1y Vea2, Vi, diam(y;) < 1/\/g

and [y1], -, [Yeq2]is an independent family of H (V(P))}

There is at least ~ d? disjoint small balls
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With uniform probability, a uniform proportion of these d? balls
contain the affine torus
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Why 1/v/d?
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independent at two points at distance larger than 1/ V.
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Why 1/v/d?

» 2-point correlation function :

IE( P[1:z] P[1:w] ) TP
11:2]lps |1 :wlrs '

» This means that the value of the random P is almost
independent at two points at distance larger than 1/ V.

» Universal semi-classical phenomenon : same for sections of
an holomorphic line bundles over a complex projective
manifold.

» Reason : universality of peak sections or universal
asymptotic behavior of the Bergmann kernel, and both of
them have a natural scale which is 1/v/d.
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Ideas of the proof of Theorem 2
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Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface £ in R™ can be C'-perturbed into a component £’
of an algebraic hypersurface.
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/\

» Choose ¢ such that £ C V(q);
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» Choose ¢ such that £ C V(q);

» homogeneize and rescale ¢ into Qg ;
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» Choose ¢ such that £ C V(q);
» homogeneize and rescale ¢ into Qg ;
» decompose P = aQy + R.
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Proposition. With uniform probability, in B(1/v/d),
> V(aQa + R) ~aifr V(Qa),
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Proposition. With uniform probability, in B(1/v/d),

> V(aQdq + R) ~aifs V(Qa),
» there exists £’ C V(aQq + R) Lagrangian for wpg.
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Facts :

> 3o, p(V(Qa)) = V(P).

Ln’



L
©
Facts :
> 3o, p(V(Qa)) = V(P).
» Then

L Lagrangian for wgg in V(P)
=
¢ Y(L£') Lagrangian for o*wpg in V(Qq)
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» £ Lagrangian for wy in V(Qq);
» how to find £” Lagrangian for p*wpg in V(Qq)?
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Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.
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Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.

For us :

» L =1(L) is Lagrangian, for ¢*wpg,
> L' = ¢o(L) is Lagrangian for wpg
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©
Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.

For us :
» L =1(L) is Lagrangian, for ¢*wpg,
> L' = ¢o(L) is Lagrangian for wpg

Objection! It could happen that v or ¢ sends £” out of the
ball!



Moser Trick. Let w symplectic and exact over
V N B. Then, there exists ¥ : VN B — V such that

> p*w = wp
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Quantitative Moser Trick. Let w symplectic and exact over
V N B. Then, there exists ¥ : VN B — V such that

> p*w = wp
» |¢) — id| is controlled by |w — wpl



Since
> wrg is close to wy over B(x,1/v/d) and
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Since

> wpg is close to wy over B(x,1/v/d) and

» with uniform probability |a| > 1 and ||R|| < 1,
then

> ¢ and 1 are close to the identity,

» so that £” and L’ stay in the ball. O
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From one to a lot of Lagrangians

» There exists ~ d" balls of size 1/v/d
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From one to a lot of Lagrangians
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» With uniform probability, a uniform proportion of them
contains a Lagrangian copy of £
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From one to a lot of Lagrangians

» There exists ~ d" balls of size 1/v/d

» With uniform probability, a uniform proportion of them
contains a Lagrangian copy of £

» Deterministic conclusion : there exists at least one such
hypersurface

» Hence, all of them have cd™ such Lagrangians.
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Small non-trivial submanifolds

Definition. Let (M",g) be a compact smooth Riemannian
n-manifold. For any k € {1,--- ,n}, let

sysp(M) := 2inf {diamL | [£] # 0 in H,(M)}

be the Berger k-systole.
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Small non-trivial submanifolds

Definition. Let (M",g) be a compact smooth Riemannian
n-manifold. For any k € {1,--- ,n}, let

sysp(M) := 2inf {diamL | [£] # 0 in H,(M)}
be the Berger k-systole.

Facts :
1. Length(systole(M)) < sys;(M).
2. If Hi(M) # 0, then sys,(M) > 0. Indeed, if £ small
enough, £ lies in a ball, so that £ is trivial in homology.
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Theorem 2 Assume that n is odd. Then,

de >0, Vd > 1, ¢ < Prob [sysn_l(V(P)) < 1.}
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Why non-vanishing Fuler characteristics ?

Fact : If £ C (V,w,J) is Lagrangian, then
>
NL~TL.
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0 # [ﬁ] S Hn_l(V).
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Why non-vanishing Euler characteristics 7

Fact : If £ C (V,w,J) is Lagrangian, then
>
NL~TL.
Indeed, w = g(+,J+), so that JTL L TL. O
» If moreover x(L£) # 0 then

0 # [ﬁ] S Hn_l(V).
Indeed for £ orientable,

X(L) = #{ zeros of a tangent vector field}.
= #{ zeros of a normal vector field}

= [£-[4.0

Corollary The only orientable compact Lagrangian in R* is
the torus.
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The Moser trick

Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.
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The Moser trick

Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.

Proof. Let w; :=wy + t(w — wp). We search (¢¢)¢, such that
prwt = wo.
Assume that (X;); is a generating vector field, that is
Odr(x) = Xy(de(x)).
This implies ¢} (E X, Wt + Otwt) = 0, which is true if
d(wi(X¢, ) +w — wo,
is true, which is true if

wt(Xt, ) + /\ — /\0.
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The Moser trick

Moser Trick. Let w symplectic and exact over V N B. Then,
there exists 1 : VN B — V such that ¢¥*w = wy.

Proof. Let w; := wp + t(w — wp). We search (¢)¢, such that
prwt = wo.
Assume that (X;); is a generating vector field, that is
Odr(x) = Xy(de(x)).
This implies ¢} (E X, Wt + Otwt) = 0, which is true if
d(wi(X¢, ) +w — wo,
is true, which is true if
we(Xe, o) + A = Xo.

Since w; is non-degenerate, this has a solution (X;):. O
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