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(Based on joint work with A. Daemi and M. Lypiyanskiy)
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Y 3 @Y 3 = ⌃2

FY SO(3) bundle F⌃ = FY |⌃

Assume: w2(F⌃) = [⌃]

R(⌃) the moduli space of flat  SO(3) connections of   F⌃

R(Y ) the moduli space of flat  SO(3) connections of   FY

R(Y ) R(⌃) immersed Lagrangian submanifold
(after perturbation).
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A goal of this research 

1)                is unobstructed (in the sense of FOOO and Akaho-Joyce)  R(Y )

Namely there exists a bounding cochain bY

2) @Y1 = @Y2 = ⌃ FY1 |@Y1 = FY2 |@Y2 = F⌃If

then HF (Y ;FY ) HF ((R(Y1), bY1), (R(Y2), bY2))⇠=

Instanton Floer homology Lagrangian Floer homology

Y = Y1 t⌃ Y2
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For this purpose we need to study ‘moduli space of mixed equation’ 
and usual package for it.

Fredholm theory, compactness, regularity,  
removable singularity,   &  perturbation.
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Case 1) R(Y ) is an embedded Lagrangian submanifold of  R(⌃)

We can achieve transversality by a ‘geometric perturbation.’

We (A. Daemi, M. Lypiyanskiy and F.) have written > 80 percent  
of papers of this case. 

Case 2) R(Y ) has self-intersection in  R(⌃)

We need abstract perturbation.

We need to extend the existing theory of virtual fundamental chain 
so that it is applicable to our gauge theory case.
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Mixed moduli space (Lypiyanskiy)

X4 4-manifold

⌦2 2-manifold @⌦ = @1⌦ t @2⌦

@X = ⌃⇥ @1⌦

X+ = X [⌃⇥@1⌦ (⌃⇥ ⌦) has three types of ends   (boundary is  ⌃⇥ @2⌦ )

1) M3 ⇥ (�1, 0]

2) ⌃⇥ ([0,1)⇥ [0, 1])

3) mixed end.
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X4 ⌦2M3 ⇥ (�1, 0] ⌃⇥ ([0,1)⇥ [0, 1])

mixed end

mixed end

1) 2)

3)

@Y 3 ⇠= {0}⇥ ⌃

@1⌦⇥ ⌃

(Y 3 t ([0, 1]⇥ ⌃))⇥ (�1, 0]

⌃⇥ ([0,1)⇥ [0, 1])
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L R(⌃) immersed Lagrangian 

We consider a pair: (A, u)

A is an ASD connection on X4

u : ⌦ ! R(⌃) a holomorphic curve

1) For t 2 @1⌦ the restriction A{t}⇥⌃ is flat and represent u(t)

2)

(Matching condition)

For t 2 @2⌦ u(t) 2 Lwe require

3) Certain asymptotic boundary condition at 3 types of ends. 
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�
M(X,⌦, L;E)

(A, u)The moduli space of such pair
E  is the energy.

The package we need.

I)
�
M(X,⌦, L;E) has a compactification.

II) When its virtual dimension is         ,  it has a virtual fundamental chain. 1

III) Its boundary is described by   ‘espace at 3 types of ends’ as in various
Floer theories.
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Uhlenbeck type compactifition of �
M(X,⌦, L;E)

(A, u, ~x, ~y, ~z)It consists of the equivalence classes of such that

(A, u) 2
�
M(X,⌦, L;E0)

~x =
X

nixi

~y =
X

miyi

~z =
X

`izi

ni 2 Z+

mi 2 Z+

`i 2 Z+

xi 2 IntX4

yi 2 @1⌦

zi 2 Int⌦

xi 6= xj

yi 6= yj

zi 6= zj

E0 +
X

ni +
X

mu +
X

`i = E
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Recall Uhlenbeck compactifition of Instanton moduli  

It consists of the equivalace classes of such that

~x =
X

nixi ni 2 Z+ xi 6= xj

(A, ~x)

X a closed 4 manifold

A an ASD connection with energy E0

xi 2 X

E0 +
X

ni = E

Our Uhlenbeck type compactification is similar.

Ak ! (A, ~x) if and Ak ! A ~xoutside ofFAk ! FA +
X

ni�xi
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this ‘compactification’.M(X,⌦, L;E)

Actually there is a ‘sliding end’ that is a solution escape at the 3-types 
of ends.  So we need to include certain configuration to compactly.  
The way to do so is similar to the known cases.

The main novel feature.

M(X,⌦, L;E)We do not expect has Kuranishi structure.
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M(X,⌦, L;E) has a stratification.

(A, u, ~x, ~y, ~z) 2 M(X,⌦, L;E)

~x =
X

nixi ~y =
X

miyi ~z =
X

`izi

The stratum is determined by ((ni), (mi), (`i))

Sk(M) codimension  k   closed stratum.
�
Sk(M) codimension  k   open stratum.

�
Sk(M) = Sk(M) \

[

`>k

S`(M)
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Remark R(⌃) is monotone and monotonicity holds in gauge 
theory side.

all the strata except the case  ~x = ~y = ~z = ; has codimension > 1.

Remark codimension here are virtual codimension
actual geometric codimension can be different.
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Tasks to be carried out.

A)   Define an appropriate notion of stratified Kuranishi structure.

B)   Show that                            has stratified Kuranishi structure.M(X,⌦, L;E)

C)   Prove that a space with stratified Kuranishi structure 
       with dimension < 2 has virtual fundamental chain with 
       expected properties.



16

A)    M =
[

k

Sk(M) a stratified metric space.

We say           has a (weak) stratified Kuranishi structure  iff

1)     each open strata 
�
Sk(M) has a Kuranishi structure of dimension n-k.

n = virdimM
2)    Kuranishi structures of various 

�
Sk(M) are

related to each other by ‘retractions’.

3)    Compatibility of retractions with coordinate change.

4)    Continuity of retractions.

M



1)     Strata-wise Kuranishi structures.

p = [A, u, ~x, ~y, ~z] 2
�
Sk(M)

a = [Aa, ua, ~xa, ~ya, ~za]
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FA + ⇤FA = 0

@u = 0 } the defining equation.

Relax it to
FAa + ⇤FAa 2 EG

p (a)

@ua 2 ES
p (a)

⇢ C1(X;⇤+
2 ⌦ so(3))}

(?)

⇢ C1(⌦;⇤01 ⌦ u⇤
aTR(⌃))
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The Kuranishi neighborhood Up is the set of isomorphism classes of

a = [Aa, ua, ~xa, ~ya, ~za] such that (?) is satisfied and matching

conditions, boundary conditions and asymptotic boundary

 conditions are satisfied.
1) For t 2 @1⌦

2)

(Matching condition)

For t 2 @2⌦ u(t) 2 L

3) Certain asymptotic boundary condition at 3 types of ends. 

Ep(a) = EG
p (a)� ES

p (a)

sp(a) = F+
Aa

� @ua

s�1
p (0) = an open neighborhood of  p  in

�
Sk(M)

[A|{t}⇥⌃] = u(t)
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Retractions 2)    Kuranishi structures of various 
�
Sk(M)

are related to each other by ‘retractions’.

q = [Aq, uq] 2
�
S0(M)

Ep

Eq

Uq

Up

sp

sq
s�1
q (0)

s�1
p (0)

�
S0(M)

 p

 q

x x
p

q

p = [Ap, up, xp] 2
�
S⇤(M)

�
S⇤(M)
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Retractions

Uq Up⇡pq

ipq ⇡⇤
pqEp Eq embedding of vector bundles

ipq(sp(⇡pq(a)) = sq(a)

Ep

Up

Eq

Uq

⇡⇤
pqEp

⇡pq

ipq

sp

sq

a smooth map
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How we use retractions ? C) 

�
S0(M)

We want to perturb the equation s = 0 to s✏ = 0

by induction on strata.

Need to extend s✏ defined on to its neighborhood in M

s✏

s̃✏

�
S⇤(M)

S⇤(M)
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Ep

Up

Eq

Uq

⇡⇤
pqEp

⇡pq

ipq

p x

S0(M)

q
x

s✏p

s̃✏q,p

existence of retraction
easily implies local extension

�
S⇤(M)
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How we construct retractions ? B) 

q = [Aq, uq] 2
�
S0(M)

p x

S0(M)

q
x

q �! p

Aq bubbles at xp

�
S⇤(M)

p = [Ap, up, xp] 2
�
S⇤(M)
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Choose V 4 ⇢ X4 \ ~x

W 2 ⇢ Int⌦2 \ ~z

B(V )⇥ B(W ) {[A0u0] | A0 is a connection on V, u0 : W ! R(⌃)}

Gauge equivalence for   A’

=

(A0, u0, x0) 7! ((A0|V , u0|W ), x0)

is a smooth embedding

(this is a consequence of unique continuation)

Up ! B(V )⇥ B(W )⇥X

,
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a = [Aa, ua] in a neighborhood q = [Aq, uq]Uq of

is in a tubular neighborhood of

(Aq|V , uq|W , local center of math of FAq )

Up

in B(V )⇥ B(W )⇥X

Uq

B(V )⇥ B(W )⇥X

UpNUp(B(V )⇥ B(W )⇥X)

⇢
is the retraction.
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Continuity of retractions 4)    Continuity of retractions.

x

S0(M)

qx
x

p1

p2

s✏ is given on 

using retraction given for p1 and p2

we extend s✏ to a neighborhood of q

ands̃✏p1
s̃✏p2

s̃✏p1
6= s̃✏p2

�
S⇤(M)

S⇤(M)
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Continuity of retractions 4)    Continuity of retractions.

x

S0(M)

qx
x

p1

p2

To obtain a global extension we take a partition of unity �i

and put

s̃✏p1
6= s̃✏p2

s̃✏ =
X

�is̃
✏
pi

�
S⇤(M)



28

We need to prove 

s̃✏ =
X

�is̃
✏
pi

(s✏)�1(0) = ; implies (s̃✏)�1(0) = ;

This follow if we assume

Continuity of retractions

8⇢ > 0 8s✏ 9� > 0 such that

if

then |s̃✏p1
� s̃✏p2

| < ⇢

9⌧ > 0

d(p1, q), d(p2, q) < ⌧ d(q, S⇤(M))  �
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Compatibility with coordinate change:

3)    Compatibility of retractions with coordinate change.

p x

S0(M)

x x
q1 q2

Eq1

Uq1

Uq2

Uq1q2

Eq2 |Uq1q2

'q1q2

b'q1q2

⇢open

This is the coordinate
change of Kuranishi 
chart.

Uq1 Uq2

Uq1q2�
S⇤(M)
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Compatibility of retractions with coordinate change is:

Uq2

Uq1q2

⇢
'q1q2

Uq1

Up

commutativity of this diagram

⇡pq2

⇡pq1

This implies that s̃✏p is compatible with coordinate change.
(we do not need to use partition of unity.)

and a similar diagram for
bundle maps
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Remark

In this situation

x

S0(M)

qx
x

p1

p2

We do not require the commutativity of

Uq

Up2

Up1

Up1p2

'p1p2

⇡p1q

⇡p2q ⇢

the continuity we required is weaker
and  much easier to check.

�
S⇤(M)
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Why we need compatibility with coordinate change ?

q = [Aq, uq] 2
�
S0(M)

p x

S0(M)

q
x

We need infinitely many charts
to cover a neighborhood of  p  in S0(M)

�
S0(M) is non-compact.

p = [Ap, up, yp] 2
�
S⇤(M)

�
S⇤(M)
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p = [Ap, up, yp] 2
�
S⇤(M)

X4

⌦2

x

⇢ C1(X;⇤+
2 ⌦ so(3))

⇢ C1(⌦, u⇤
pTR(⌃)⌦ ⇤01)

EG
p

ES
p

Ep = EG
p � ES

p

allImd+Ap
+ ImDup@ + Ep =

⌃⇥ ([0,1)⇥ [0, 1])M3 ⇥ (�1, 0]

yp
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all    ?

q = [Aq, uq] 2
�
S0(M)

Imd+Aq
+ ImDuq@ + Ep(q) =

I do not know.

This is likely true if  y  is not on the matching line.

There is no cokernel of the linearized operator for the bubble.

This is the consequence of Weitzenböck formula for gauge theory
and the positivity of         for pseudo-holomorphic curve.R(⌃)
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all    ?

q = [Aq, uq] 2
�
S0(M)

Imd+Aq
+ ImDuq@ + Ep(q) =

However we do not know how to classify the bubble at the 
matching line.

Therefore we put Eq = Ep(q)+ something which lies in a neighborhood of  y.

This part depends on  q.
Its rank may go to infinity as q ! p


