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Motivation

Although noncommutative algebraic geometry is of interest in
its own right, my motivation comes from special functions: I
want to understand moduli spaces of difference or differential
equations, and this leads to noncommutative geometry via rep-
resentations of noncommutative P1-bundles over curves via dif-
ference/differential operators. This also leads one to consider
blowups: each blowup locks in some information about the sin-
gularities of the equation. (So equations with specified singu-
larities eventually correspond to sheaves disjoint from a certain
“anticanonical” curve in the surface.)

One issue: the interpretation as equations is not intrinsic to the
surface, but also depends on a choice of ruling. So it’s important
to know when two blown up noncommutative ruled surfaces are
isomorphic!
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What is a noncommutative surface?

This is actually an open question in general, but roughly: A

noncommutative (projective) surface is a pair (A,M) (where A

is an abelian category, M ∈ A is an object) that “looks like” the

pair (cohX,OX) for X a commutative projective surface. (N.b.,

we refer to cohX and OX in the noncommutative case as well.)

The cases I consider are all deformations of commutative sur-

faces: that is, they are fibers of flat families over an irreducible

base, another fiber of which comes from a commutative pro-

jective surface. (This is half a lie: the constructions lead to

many other cases, but they’re all families of Azumaya algebras

on commutative surfaces, so not really noncommutative.)
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Basic problem

There are three basic constructions of noncommutative surfaces:

• Noncommutative projective planes (Artin/Tate/van den Bergh,

Bondal/Polishchuk),

• Noncommutative P1-bundles over smooth curves (van den

Bergh),

• Blowing up points on noncommutative surfaces (van den

Bergh).
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Basic problem cont’d

But very little is known about the interactions between these

constructions. E.g., if we blow up a point on a ruled surface, it

should be a blown up ruled surface in two different ways!

Trying to prove these directly from the constructions looks hard:

too many subcases to consider.
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A crucial observation

A big issue is that the constructions themselves are pretty com-

plicated. However, their derived categories are a lot easier to

describe.

E.g., if π : X̃ → X is a blowup, Db
coh(X̃) has a semiorthogonal

decomposition

(〈Oe(−1)〉, Lπ∗Db
coh(X))

and RHom(Oe(−1), π∗M) ∼= RHom(Ox,M)[1].

Key observation: This data lets us reconstruct Db
coh(X̃)! (tech-

nicality: work with dg-categories)
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In fact, we can recover the t-structure as well! In the main cases

of interest, Db
coh(X) is Gorenstein: it has a Serre functor of

the form S = θ[2] where θ is an abelian autoequivalence. The

semiorthogonal decomposition induces a Serre functor on X̃, so

a (derived) functor θ̃.

Claim. The functor θ̃ is exact and θ̃−1 is relatively ample for

X̃ → X.

In particular, M ∈ Db
coh(X̃) is nonnegative iff π∗θ̃nM is nonnega-

tive for all n. But Serre functors are intrinsic!
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Similarly, for P2, Bondal and Polishchuk show that there is a full

exceptional collection

(O(−2),O(−1),O(0)),

the Serre functor has the form θ[2] where θO(n) ∼= O(n−3), and

θ−1 is ample, so the t-structure is inherited from Db
coh(k).

For ruled surfaces over C, there is a semiorthogonal decomposi-

tion

(Db
coh(C), Db

coh(C))

and θ−1 is relatively ample for the projection onto the second

factor.
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So anything obtained via the three basic constructions has a nice

inductive description of the derived category and a nice inductive

description of a t-structure, and thus implicitly a description of

the heart of the t-structure. But this is what we mean by a

noncommutative scheme!

Caveat: I don’t know how to prove that the dg-category we get

is the derived dg-category of the heart of the t-structure without

using the existing constructions of abelian categories. So at the

moment this is more a characterization than a construction.
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An immediate corollary: Anything obtained via the three basic

constructions satisfies Serre duality. (Indeed, it has a semiorthog-

onal collection in which each term is either Db
coh(C) or Db

coh(k).)

This also makes it straightforward to compute the Serre functor

in many cases. (We also find that, modulo a technical assump-

tion on the base ruled surface that only fails for some Azumaya

algebras, the curve of points is anticanonical.)
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Constructing isomorphisms

How do we show, e.g., that elementary transformations work?

(I.e., that a blowup of a noncommutative ruled surface is also a

blowup of a different noncommutative ruled surface.)

Step 1: Construct the corresponding derived equivalence.

Step 2: Check that it preserves the t-structure.

Step 3: Conclude that it’s an abelian equivalence!
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For step 1: The expression as a blowup of a ruled surface gives

a three-term semiorthogonal decomposition. In the commuta-

tive case, the equivalence corresponds to a modification of the

decomposition (a full twist of the first two terms). So do the

same thing in the noncommutative setting!
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For step 2: The derived equivalence preserves the projection to

the last term Db
coh(C) of the three-term semiorthogonal decom-

position. Asking for θ−1 to be relatively ample for this functor

gives a t-structure which is manifestly preserved. So we just

need to show that it always agrees with the (two-step) inductive

t-structure.

This reduces to showing that for any sheaf M , there is n ∈ Z such

that the image of πnM in coh(C) is nontrivial. This is easier than

it looks: the inductive description of the derived category tells

us everything we might want to know about K0, and lets us

conclude that a minimal such M has a nontrivial endomorphism,

so isn’t minimal. . .
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Something similar applies in the other cases, with some caveats:

(1) Showing that a one-point blowup of P2 is ruled involves a

more complicated modification of the exceptional collection.

(2) For commuting of blowups in distinct points, one needs the

right notion of “distinct”. Näıvely distinct suffices to define the

derived equivalence, but a stronger condition is needed to make

it exact. (Something similar applies to swapping the “distinct”

rulings of P1 × P1.)
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First main result:

Theorem. If the noncommutative scheme X is obtained by a
sequence of blowups and blowdowns from a noncommutative
projective plane or noncommutative ruled surface, then X is a
noncommutative projective plane or an iterated blowup of a non-
commutative ruled surface.

(We then define “rational” to mean either projective plane or
iterated blowup of a ruled surface over P1.)

Idea: We reduce to showing that if a one-point blowup of X is
an iterated blowup of a plane or ruled surface, then so is X. But
this reduces to showing that the group(oid) of equivalences we’ve
constructed gives a description of X̃ in which the last exceptional
curve is the one we want. This reduces to combinatorics of root
systems.
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Rational surfaces

There is a particularly nice description of the derived category in

the rational case.

Claim. Let X be a noncommutative rational surface. Then

OX is exceptional, so induces a semiorthogonal decomposition

(N , 〈OX〉). There is a commutative rational surface X0 that has

a semiorthogonal decomposition with equivalent terms.
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Note that if (A,B) is a semiorthogonal decomposition of a sur-

face with anticanonical curve Q, then

RHom(A,B) ∼= RHomQ(A|LQ, B|
L
Q).

So for N ∈ N ,

RHom(N,OX0
) ∼= RHom(N |LQ,OQ)

and X simply twists by an invertible sheaf in Pic0(Q).

Consequence: Every nontrivial Poisson structure on a commuta-

tive rational surface is the limit of a family of noncommutative

rational surfaces as constructed. (This also holds for rationally

ruled surfaces more generally.)
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Second main result:

Theorem. The moduli problem of classifying simple coherent

sheaves on X (i.e., Hom(M,M) ∼= k) is represented by an al-

gebraic space with a natural (up to an overall scalar) Poisson

structure. Moreover, the fibers of M 7→ M |LQ are smooth sym-

plectic leaves.
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This generalizes:

Theorem. [work in progress with Pym] The derived moduli stack

of objects in perf(X) has a natural (up to an overall scalar) 0-

shifted Lagrangian structure over the moduli stack of objects in

perf(Q).

(Note that it is not entirely trivial to show that the “generaliza-

tion” implies the original result.)

In each case, any autoequivalence that acts as a translation on

points of Q preserves the Poisson structure.
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Third main result:

Theorem. Let X be a commutative del Pezzo surface of de-

gree 1, and let Xq,z be the noncommutative surface obtained

by (a) deforming X to a noncommutative surface with param-

eter q ∈ Pic0(Q) and (b) blowing up a smooth point z ∈ Q ∼=
Pic0(Q). Then for any element of SL2(Z), the derived categories

perf(Xq,z) and perf(Xaq+bz,cq+dz) are equivalent.

Idea: One generator is twisting by the exceptional curve, which

comes from (a) doing a full twist in the semiorthogonal decompo-

sition (Oe(−1), X) and (b) noting that this acts as a (spherical)

derived autoequivalence on the restrictions to Q. For the other

generator, use OXq,z instead of Oe(−1)!
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If aq + bz = 0, then Xaq+bz,cq+dz is commutative, and has an

interpretation as a moduli space of sheaves on Xq,z. Moreover,

for b 6= 0, those sheaves are precisely the sort of sheaves that

correspond to differen(ce/tial) equations. In other words: we

get a derived equivalence between (a) a moduli space of dif-

feren(ce/tial) equations and (b) a noncommutative deformation

of a relaxation of the moduli space.

In the differential case, this includes a (nontrivial) instance of

the derived equivalence arising in geometric Langlands. (Thus:

Vague Conjecture: There is an analogue of geometric Langlands

for difference equations!)
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The semiorthogonal decomposition also makes it easy to define

a duality ad : perf(X)op → perf(X) which together with Serre

duality and the understanding of K0(X) and the Mukai pairing

makes it fairly straightforward to prove more things about non-

commutative surfaces.

One consequence: there is a natural notion of “divisor class”,

and corresponding notions of “effective”, “nef”, and “ample”,

with “ample” satisfying both Serre vanishing and global gener-

ation. Choosing an ample divisor class gives a notion of Hilbert

polynomial, and things like flattening stratifications and Quot

schemes work as well as they do in the commutative setting

(even for families of noncommutative surfaces).
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