Surface singularities and their deformations via principal bundles on elliptic curves

Dougal Davis

University of Edinburgh

FreeMath, 11 August 2020
All objects are defined over an algebraically closed field k of characteristic zero.

Definition

A *du Val singularity* on an algebraic surface X is a point $p \in X$ whose formal neighbourhood is isomorphic to the formal neighbourhood of $0 \in \mathbb{A}^2/\Gamma$ for some finite subgroup $\Gamma \subseteq SL_2(k)$.

The du Val singularities are classified by Dynkin diagrams of type ADE:

- **Dynkin diagram** \rightarrow Dual graph of exceptional fibre of minimal resolution
Possible Dynkin diagrams

- A_n: \[\cdots -
\]

- D_n: \[\cdots -
\]

- E_6: \[\cdots
\]

- E_7: \[\cdots
\]

- E_8: \[\cdots
\]
What do du Val singularities have to do with Lie algebras?

First pass

<table>
<thead>
<tr>
<th>Du Val singularity X</th>
<th>ADE Lie algebra \mathfrak{g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form the miniversal deformation of X:</td>
<td>Form the adjoint quotient of \mathfrak{g}:</td>
</tr>
<tr>
<td>$Z \longrightarrow B$</td>
<td>$\mathfrak{g}//G = \text{Spec } k[\mathfrak{g}]^G$</td>
</tr>
<tr>
<td>\mathbb{G}_m</td>
<td>\mathbb{G}_m</td>
</tr>
</tbody>
</table>

Then there’s a \mathbb{G}_m-equivariant isomorphism $B \cong \mathfrak{g}//G \cong \mathbb{A}^n$ (interesting weights).
Second pass [Brieskorn, 1970s]

- Let $Z \subseteq \mathfrak{g}$ be a subregular transversal slice:
 - closed subvariety
 - transverse to all G-orbits
 - contains a unique subregular nilpotent element
- Restrict adjoint quotient map $\chi: \mathfrak{g} \to \mathfrak{g}/G$ to $Z \subseteq \mathfrak{g}$

Then

$$\chi|_Z: Z \longrightarrow \mathfrak{g}/G = B$$

is the miniversal deformation of $X = \chi|^{-1}_Z(0)$.
Singularities and principal bundles on elliptic curves

Let \(E \) be an elliptic curve.

Singularity theory

Let \(X \) be a cone over \(E \) of degree \(9 - n \) for \(n = 6, 7, 8 \). Then:

- Positive weight part of base of miniversal deformation
- Weighted affine space \(\mathbb{A}^{n+1} \)

Principal bundles

Let \(G \) be a simply connected simple group of type \(E_n \). Then:

- Coarse moduli of semistable \(G \)-bundles on \(E \)
- Weighted projective space \(WP^n \)

The weights appearing on either side are the same! [Looijenga, Friedman-Morgan]

Aim of today

Explain this coincidence with a version of Brieskorn’s construction, and generalise to other types.
Plan of the talk

1. Motivation: du Val singularities and Lie algebras
 - Du Val singularities
 - Du Val singularities via Lie theory
 - Towards principal bundles on elliptic curves

2. The stack of principal bundles on an elliptic curve
 - The coarse moduli space
 - Unstable bundles
 - History

3. Main results
 - Subregular slices
 - Singular surfaces
 - Remarks
 - Some words on the proof

4. Further remarks
 - Folding
 - Poisson geometry and quantisation
The stack of principal bundles

Let E be an elliptic curve, and let G be a simply connected simple algebraic group. Let

$$
\text{Bun}_G = \left\{ \text{principal } G\text{-bundles} \right\} \bigcup \bigcup
\text{Bun}^{ss}_G = \{\text{semistable bundles}\}
$$

Theorem (Friedman-Morgan)

The stack Bun^{ss}_G has a coarse moduli space, which is isomorphic to a weighted projective space

$$
\text{WP}^n := \mathbb{P}(g_0, g_1, \ldots, g_n),
$$

where the weights g_i are the coroot integers of G, and n is the rank of G.
There is an analogy

\[
\begin{align*}
\text{Adjoint quotient map} & \quad g/G \to \mathbb{A}^n = g//G \\
\text{Coarse moduli map} & \quad \text{Bun}_G^{ss} \to \mathbb{P}^n
\end{align*}
\]

This can be justified in at least three ways:

- Over \(\mathbb{C}\), \(\text{Bun}_G = \mathcal{L}G / q\mathcal{L}G\), where \(\mathcal{L}G\) is the group of holomorphic maps \(\mathbb{C}^\times \to G\) and \(E = \mathbb{C}^\times / q\mathbb{Z}\)
- \(\text{Bun}_G^{ss}\) degenerates to \(g/G\) as \(E\) degenerates to a curve with a cusp
- The two families are isomorphic over a formal neighbourhood of the origin (e.g., [Frățilă-Gunningham-Li])

Many structures and results on the left hand side carry over to the right hand side (e.g., Grothendieck-Springer resolution, Chevalley isomorphism, Kostant section theorem).
E.g.,

Section theorems

<table>
<thead>
<tr>
<th>Kostant:</th>
<th>Friedman-Morgan:</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a section</td>
<td>There exists a section</td>
</tr>
<tr>
<td>(\mathbb{A}^n \to \mathfrak{g}/G)</td>
<td>(\mathbb{WP}^n \to \text{Bun}_{\mathcal{G}}^{ss})</td>
</tr>
<tr>
<td>whose image is the set of regular orbits.</td>
<td>whose image is the set of regular semistable bundles.</td>
</tr>
</tbody>
</table>

(Technical caveat: for Friedman-Morgan theorem, need to “rigidify out” the centre of \(G \) in all automorphism groups in \(\text{Bun}_{\mathcal{G}}^{ss} \) and take the stacky weighted projective space to get a morphism of stacks.)
How does \mathbb{A}^{n+1} fit into the story? What does the origin mean?

Paraphrasing Helmke and Slodowy:

- Let $\Theta \in \text{Pic}(\text{Bun}_G)$ be a positive generator
- The coarse moduli space of Bun_G^{ss} is

$$\text{WP}^n \cong \text{Proj} \bigoplus_{m \geq 0} H^0(\text{Bun}_G, \Theta^m)$$

- The weighted affine space is

$$\mathbb{A}^{n+1} \cong \text{Spec} \bigoplus_{m \geq 0} H^0(\text{Bun}_G, \Theta^m)$$

- Tautologically, the coarse moduli space map $\text{Bun}_G^{ss} \to \text{WP}^n$ extends to a morphism

$$\chi : \text{Bun}_G \longrightarrow \mathbb{A}^{n+1}/\mathbb{G}_m$$

sending unstable bundles to the (stacky) origin
What does the unstable locus look like?

- Open dense locus of regular unstable bundles with \(\dim \text{Aut} = n + 2 \),
- Subregular unstable bundles:
 - \(\dim \text{Aut} = n + 4 \) (next smallest)
 - Can appear in codimension 1 (1-parameter family up to translation) or in codimension 2 (unique up to translation)
- Can have multiple irreducible components of the regular and subregular unstable loci
History

1970s Looijenga: work on elliptic cones and root systems

1980s Slodowy: proposed Brieskorn-style construction for elliptic singularities from loop groups

1990s Friedman–Morgan: moduli of principal bundles

2000 Helmke–Slodowy: description of strata of unstable locus

2004 Helmke–Slodowy: sketch of slice construction and singularities of surfaces in type ADE

2013 Ben-Zvi–Nadler: semistable elliptic Grothendieck-Springer resolution

2015 Grojnowski–Shepherd-Barron: definition of elliptic Grothendieck-Springer resolution for unstable bundles, detailed study in type E

2019 D.: general theory of unstable elliptic Grothendieck-Springer resolution
Theorem 1 (Existence of subregular slices)

For each irreducible component U of the locus of subregular unstable G-bundles, there exists a morphism $Z \to \text{Bun}_G$ such that:

- the morphism is smooth (modulo translations)
- the preimage $Z_0 \subseteq Z$ of the subregular unstable locus maps isomorphically onto the coarse moduli space of U (modulo translations)
- there exists a torus H acting on Z and a character $\lambda : H \to \mathbb{G}_m$ such that $Z_0 = Z^H$ and the composition

$$Z \to \text{Bun}_G \to \mathbb{A}^{n+1}/\mathbb{G}_m$$

lifts to an H-equivariant map $\chi_Z : Z \to \mathbb{A}^{n+1}$, where H acts on \mathbb{A}^{n+1} via λ.
Theorem 2 (Description of unstable loci)

The surfaces $\chi_Z^{-1}(0)$ are:

- (Type A_n, $n > 1$) Two line bundles on E glued together along their zero sections
- (Types C, D (resp., B)) A single line bundle on E with its zero section glued to itself along $E \to \mathbb{P}^1$ (resp., $E \to \mathbb{P}(1, 2)$)
- (Types A_1, E, F, G) A line bundle on E with its zero section contracted to a point

In each case, the family $\chi_Z: Z \to \mathbb{A}^{n+1}$ is the part of a miniversal deformation of $\chi_Z^{-1}(0)$ with weights in $\mathbb{Z}_{>0}\lambda$.
Remarks

- Local description of the singularities in Theorem 1 sketched in types ADE by Helmke-Slodowy, treated in detail by Grojnowski and Shepherd-Barron in type E
- When the singularities are not isolated, the deformation theory depends on the global geometry of the singularity!

Technical points

- Theorem 1 needs to be taken with rigidified Bun_G (mod out by centre of G in automorphism groups)
- The slice Z is only a Deligne-Mumford stack in type B (contains a point with stabiliser μ_2)
Proof of Theorem 1.

The construction of the slice follows a suggestion of Helmke-Slodowy:

- Each component U is a gerbe over a connected component of $\text{Bun}_{L,\text{reg}}^{ss}$ for some Levi subgroup $L \subseteq G$.
- Take Z_0 to be the coarse moduli space of $\text{Bun}_{L,\text{reg}}^{ss}$ modulo translations, equipped with a Friedman-Morgan section $Z_0 \to \text{Bun}_{L,\text{reg}}^{ss}$ (small choice here in some types).
- Use a parabolic induction construction to build

\[Z = \text{Bun}_P \times_{\text{Bun}_L} Z_0 \longrightarrow \text{Bun}_G \]

Then check in each case that choices can be made so that $Z \to \mathbb{A}^{n+1}/\mathbb{G}_m$ lifts H-equivariantly to $Z \to \mathbb{A}^{n+1}$, where

\[H = \frac{\text{centre of } L}{\text{centre of } G}. \]
Proof of Theorem 2.

To identify singularities:

- Pull back the elliptic Grothendieck-Springer resolution to Z: this gives a “resolution” of $\chi_Z^{-1}(0)$ by a normal crossings variety.
- Computation of resolution reduces to computations with Levi subgroup L (much simpler than G itself).
- Identify $\chi_Z^{-1}(0)$ with affinisation of its resolution relative to Z_0.

For miniversality, just need to check:

- Weights for miniversal deformation and \mathbb{A}^{n+1} match up.
- Deformation from χ_Z has no trivial directions.
Brieskorn’s construction for non-\(ADE \) groups:

- Every non-\(ADE \) Dynkin diagram is obtained by folding an \(ADE \) Dynkin diagram along an automorphism \(\sigma \):

\[
\begin{align*}
D_{n+1}: & \quad - - - - \quad C_n: & \quad - - - - \\
E_6: & \quad - - - - \quad F_4: & \quad - -
\end{align*}
\]
Slodowy showed that:

- Brieskorn’s construction applied to a $BCFG$ group gives the same $\chi|_Z^{-1}(0)$ as the corresponding ADE group
- The folding automorphism σ acts on $\chi|_Z^{-1}(0)$ and on its miniversal deformation
- The adjoint quotient family $\chi|_Z: Z \to g//G$ for the $BCFG$ group is the σ-fixed part of the miniversal deformation

Groups giving the same singular surface

<table>
<thead>
<tr>
<th>Folded group</th>
<th>B_n</th>
<th>C_n</th>
<th>F_4</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfolded group</td>
<td>A_{2n+1}</td>
<td>D_{n+1}</td>
<td>E_6</td>
<td>D_4</td>
</tr>
<tr>
<td>Order of σ</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Similar (but different) story in elliptic world:

<table>
<thead>
<tr>
<th>Groups giving the same singular surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folded group</td>
</tr>
<tr>
<td>Unfolded group</td>
</tr>
<tr>
<td>Folding weight d</td>
</tr>
</tbody>
</table>

To fold a Dynkin diagram in this setting:

- Add a vertex to get the affine Dynkin diagram
- Label vertices by coroot integers g_0, \ldots, g_n
- Restrict to vertices with g_i divisible by a chosen weight d (gives another affine Dynkin diagram)
- Delete a vertex to go back to a finite type Dynkin diagram

The deformation for the folded group is the μ_d-fixed part of the deformation for the unfolded group.
Poisson geometry for du Val singularities:

- The Slodowy slices $Z \subseteq \mathfrak{g}$ (canonical choices of transversal slice) have Poisson structures (Hamiltonian reduction from \mathfrak{g}).
- The Poisson structures are symplectic on the smooth loci of the fibres of $\chi|_Z : Z \to \mathfrak{g} // G$.
- The Slodowy slices are quantised by finite W-algebras (quantum Hamiltonian reduction from $U(\mathfrak{g})$).

Poisson geometry for elliptic slices:

- The subregular slices $Z \to \text{Bun}_G$ from Theorem 1 also have Poisson structures.
- Poisson structures are symplectic on smooth loci of nonzero fibres of $\chi_Z : Z \to \mathbb{A}^{n+1}$.
- Quantisations?? Reduction from “quantum Bun$_G$”???
E.g., $G = SL_2$ (type A_1):

- The subregular slice is $Z = \text{Ext}^1(L, L^{-1}) \cong \mathbb{A}^4$, where L is a line bundle on E of degree 2.
- The map $\chi_Z : \mathbb{A}^4 \to \mathbb{A}^2$ is given by two quadratic functions cutting out the cone over $E \subseteq \mathbb{P}^3$.
- In this case, the Poisson structure quantises to a 3-dimensional Sklyanin algebra.
- More generally, slices of Bun_{GL_n} of the form $\text{Ext}^1(V, L)$ for a stable vector bundle V and a line bundle L are quantised by Feigin-Odesskii elliptic algebras (aka elliptic Sklyanin algebras).